Inshore Ship Detection Based on Convolutional Neural Network in Optical Satellite Images

Author(s):  
Fei Wu ◽  
Zhiqiang Zhou ◽  
Bo Wang ◽  
Jinlei Ma
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1592
Author(s):  
Jonguk Kim ◽  
Hyansu Bae ◽  
Hyunwoo Kang ◽  
Suk Gyu Lee

This paper suggests an algorithm for extracting the location of a building from satellite imagery and using that information to modify the roof content. The materials are determined by measuring the conditions where the building is located and detecting the position of a building in broad satellite images. Depending on the incomplete roof or material, there is a greater possibility of great damage caused by disaster situations or external shocks. To address these problems, we propose an algorithm to detect roofs and classify materials in satellite images. Satellite imaging locates areas where buildings are likely to exist based on roads. Using images of the detected buildings, we classify the material of the roof using a proposed convolutional neural network (CNN) model algorithm consisting of 43 layers. In this paper, we propose a CNN structure to detect areas with buildings in large images and classify roof materials in the detected areas.


2020 ◽  
Vol 230 ◽  
pp. 117451 ◽  
Author(s):  
Tongshu Zheng ◽  
Michael H. Bergin ◽  
Shijia Hu ◽  
Joshua Miller ◽  
David E. Carlson

2019 ◽  
Vol 11 (23) ◽  
pp. 2862 ◽  
Author(s):  
Weiwei Fan ◽  
Feng Zhou ◽  
Xueru Bai ◽  
Mingliang Tao ◽  
Tian Tian

Ship detection plays an important role in many remote sensing applications. However, the performance of the PolSAR ship detection may be degraded by the complicated scattering mechanism, multi-scale size of targets, and random speckle noise, etc. In this paper, we propose a ship detection method for PolSAR images based on modified faster region-based convolutional neural network (Faster R-CNN). The main improvements include proposal generation by adopting multi-level features produced by the convolution layers, which fits ships with different sizes, and the addition of a Deep Convolutional Neural Network (DCNN)-based classifier for training sample generation and coast mitigation. The proposed method has been validated by four measured datasets of NASA/JPL airborne synthetic aperture radar (AIRSAR) and uninhabited aerial vehicle synthetic aperture radar (UAVSAR). Performance comparison with the modified constant false alarm rate (CFAR) detector and the Faster R-CNN has demonstrated that the proposed method can improve the detection probability while reducing the false alarm rate and missed detections.


Sign in / Sign up

Export Citation Format

Share Document