scholarly journals Cloud-Based Automated Clinical Decision Support System for Detection and Diagnosis of Lung Cancer in Chest CT

Author(s):  
Anum Masood ◽  
Po Yang ◽  
Bin Sheng ◽  
Huating Li ◽  
Ping Li ◽  
...  
Author(s):  
Rio Kurniawan ◽  
Sri Hartati

Abstract-- Lung cancer is leading cause of death in the cancer group. In general, lung cancer has some symptoms, but at an early stage, symptoms are not perceived by the patient. As a result, when patients go to hospital, lung cancer has been diagnosed in middle or high stage. For early detection of lung cancer, necessary a decision support system based on computerized technology that can be utilized by doctor needed to detection lung cancer. The clinical decision support system will help to determine specific medical treatment. The clinical decision support system capable to know data input and produce output result by learning process. The learning process is  part of process in artificial neural network (ANN). Many methods used in ANN as Backpropagation (BP)learning algorithm. BP used to produce output result in decision support system. Keywords-- lung cancer, stage, clinical decision support systems, neural network, multilayer perceptron, backpropagation algorithm


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 386
Author(s):  
Ching-Hsue Cheng ◽  
Hsien-Hsiu Chen ◽  
Tai-Liang Chen

Thoracic computed tomography (CT) technology has been used for lung cancer screening in high-risk populations, and this technique is highly effective in the identification of early lung cancer. With the rapid development of intelligent image analysis in the field of medical science and technology, many researchers have proposed computer-aided automatic diagnosis methods for facilitating medical experts in detecting lung nodules. This paper proposes an advanced clinical decision-support system for analyzing chest CT images of lung disease. Three advanced methods are utilized in the proposed system: the three-stage automated segmentation method (TSASM), the discrete wavelet packets transform (DWPT) with singular value decomposition (SVD), and the algorithms of the rough set theory, which comprise a classification-based method. Two collected medical CT image datasets were prepared to evaluate the proposed system. The CT image datasets were labeled (nodule, non-nodule, or inflammation) by experienced radiologists from a regional teaching hospital. According to the results, the proposed system outperforms other classification methods (trees, naïve Bayes, multilayer perception, and sequential minimal optimization) in terms of classification accuracy and can be employed as a clinical decision-support system for diagnosing lung disease.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1309-P
Author(s):  
JACQUELYN R. GIBBS ◽  
KIMBERLY BERGER ◽  
MERCEDES FALCIGLIA

2020 ◽  
Vol 16 (3) ◽  
pp. 262-269
Author(s):  
Tahere Talebi Azad Boni ◽  
Haleh Ayatollahi ◽  
Mostafa Langarizadeh

Background: One of the greatest challenges in the field of medicine is the increasing burden of chronic diseases, such as diabetes. Diabetes may cause several complications, such as kidney failure which is followed by hemodialysis and an increasing risk of cardiovascular diseases. Objective: The purpose of this research was to develop a clinical decision support system for assessing the risk of cardiovascular diseases in diabetic patients undergoing hemodialysis by using a fuzzy logic approach. Methods: This study was conducted in 2018. Initially, the views of physicians on the importance of assessment parameters were determined by using a questionnaire. The face and content validity of the questionnaire was approved by the experts in the field of medicine. The reliability of the questionnaire was calculated by using the test-retest method (r = 0.89). This system was designed and implemented by using MATLAB software. Then, it was evaluated by using the medical records of diabetic patients undergoing hemodialysis (n=208). Results: According to the physicians' point of view, the most important parameters for assessing the risk of cardiovascular diseases were glomerular filtration, duration of diabetes, age, blood pressure, type of diabetes, body mass index, smoking, and C reactive protein. The system was designed and the evaluation results showed that the values of sensitivity, accuracy, and validity were 85%, 92% and 90%, respectively. The K-value was 0.62. Conclusion: The results of the system were largely similar to the patients’ records and showed that the designed system can be used to help physicians to assess the risk of cardiovascular diseases and to improve the quality of care services for diabetic patients undergoing hemodialysis. By predicting the risk of the disease and classifying patients in different risk groups, it is possible to provide them with better care plans.


2021 ◽  
pp. 0310057X2097403
Author(s):  
Brenton J Sanderson ◽  
Jeremy D Field ◽  
Lise J Estcourt ◽  
Erica M Wood ◽  
Enrico W Coiera

Massive transfusions guided by massive transfusion protocols are commonly used to manage critical bleeding, when the patient is at significant risk of morbidity and mortality, and multiple timely decisions must be made by clinicians. Clinical decision support systems are increasingly used to provide patient-specific recommendations by comparing patient information to a knowledge base, and have been shown to improve patient outcomes. To investigate current massive transfusion practice and the experiences and attitudes of anaesthetists towards massive transfusion and clinical decision support systems, we anonymously surveyed 1000 anaesthetists and anaesthesia trainees across Australia and New Zealand. A total of 228 surveys (23.6%) were successfully completed and 227 were analysed for a 23.3% response rate. Most respondents were involved in massive transfusions infrequently (88.1% managed five or fewer massive transfusion protocols per year) and worked at hospitals which have massive transfusion protocols (89.4%). Massive transfusion management was predominantly limited by timely access to point-of-care coagulation assessment and by competition with other tasks, with trainees reporting more significant limitations compared to specialists. The majority of respondents reported that they were likely, or very likely, both to use (73.1%) and to trust (85%) a clinical decision support system for massive transfusions, with no significant difference between anaesthesia trainees and specialists ( P = 0.375 and P = 0.73, respectively). While the response rate to our survey was poor, there was still a wide range of massive transfusion experience among respondents, with multiple subjective factors identified limiting massive transfusion practice. We identified several potential design features and barriers to implementation to assist with the future development of a clinical decision support system for massive transfusion, and overall wide support for a clinical decision support system for massive transfusion among respondents.


Sign in / Sign up

Export Citation Format

Share Document