Compact Multiport MIMO Antenna System for 5G IoT and Cellular Handheld Applications

Author(s):  
Hassan Tariq Chattha ◽  
Muhammad Kamran Ishfaq ◽  
Bilal A. Khawaja ◽  
Abubakar Sharif ◽  
Nathirulla Sheriff
Keyword(s):  
Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mujeeb Abdullah ◽  
Ahsan Altaf ◽  
Muhammad Rizwan Anjum ◽  
Zulfiqar Ali Arain ◽  
Abdul Aleem Jamali ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Ziyu Xu ◽  
Qisheng Zhang ◽  
Linyan Guo

AbstractA printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Lajos Nagy

This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching) for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.


2021 ◽  
Author(s):  
Muhannad Y. Muhsin ◽  
Ali J. Salim ◽  
Jawad K. Ali
Keyword(s):  

2018 ◽  
Vol 60 (11) ◽  
pp. 2794-2801 ◽  
Author(s):  
A. Raza ◽  
Muhammad U. Khan ◽  
Farooq A. Tahir ◽  
R. Hussain ◽  
Mohammad S. Sharawi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document