Matrix Exponential Method Exploiting Field Splitting Technique for Calculating Electromagnetic Response of Rotating Bodies: 2D Configuration

Author(s):  
Jinghui Shao ◽  
Xikui Ma ◽  
Jiawei Wang
1979 ◽  
Vol 101 (3) ◽  
pp. 417-427 ◽  
Author(s):  
C. Bagci ◽  
S. Kalaycioglu

The article presents a general method for the elastodynamic analysis of planar mechanisms. It uses planar actual finite line elements (regular and irregular elements given in a companion article) and lumped mass systems to formulate the equations of motion of a mechanism. Damping coefficient matrix can incorporate time dependent viscous or coulomb damping coefficients in addition to the coefficients of velocity dependent internal damping. The forcing vector can incorporate any externally applied time dependent force or torque, inertial forces and inertial torques, any nonlinear viscous or Coulomb damping forces and torques. The matrix exponential method is introduced for the numerical solution of the equations of motion. Matrix displacement method of determining dynamic stresses using the generalized coordinate displacements is given. Elastodynamic analysis of a plane four-bar mechanism is performed for several cycles of kinematic motion, and the dynamic stresses are compared with those obtained by experiments. The method of “Critical-Geometry-Kineto-Elasto-Statics” (CGKES) is proposed for the computation of dynamic stress magnitudes making use of the critical geometry of the mechanism. It requires the analysis of a mechanism at the critical geometry position of the mechanism which is defined by the lowest fundamental frequency of the mechanism. The results predicted by the method of CGKES compares within two percent with the experimental results.


2021 ◽  
Vol 247 ◽  
pp. 06047
Author(s):  
Zack Taylor ◽  
Benjamin Collins ◽  
Ivan Maldonado

Matrix exponential methods have long been utilized for isotopic depletion in nuclear fuel calculations. In this paper we discuss the development of such methods in addition to species transport for liquid fueled molten salt reactors (MSRs). Conventional nuclear reactors work with fixed fuel assemblies in which fission products and fissile material do not transport throughout the core. Liquid fueled molten salt reactors work in a much different way, allowing for material to transport throughout the primary reactor loop. Because of this, fission product transport must be taken into account. The set of partial differential equations that apply are discretized into systems of first order ordinary differential equations (ODEs). The exact solution to the set of ODEs is herein being estimated using the matrix exponential method known as the Chebychev Rational Approximation Method (CRAM).


Sign in / Sign up

Export Citation Format

Share Document