2000 ◽  
Author(s):  
Shawn-Yu Lin ◽  
James G. Fleming ◽  
Mihail M. Sigalas ◽  
Rana Biswas ◽  
Kai M. Ho

1999 ◽  
Vol 75 (7) ◽  
pp. 905-907 ◽  
Author(s):  
Susumu Noda ◽  
Noritsugu Yamamoto ◽  
Hideaki Kobayashi ◽  
Makoto Okano ◽  
Katsuhiro Tomoda

2011 ◽  
Vol 110 (4) ◽  
pp. 044909 ◽  
Author(s):  
Shich-Chuan Wu ◽  
Yu-Lin Yang ◽  
Wen-Hsien Huang ◽  
Yang-Tung Huang

Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


2005 ◽  
Vol 13 (7) ◽  
pp. 2370 ◽  
Author(s):  
Peng Yao ◽  
Garrett J. Schneider ◽  
Dennis W. Prather ◽  
Eric D. Wetzel ◽  
Daniel J. O'Brien

Sign in / Sign up

Export Citation Format

Share Document