An Adaptive Two-Component Model-Based Decomposition on Soil Moisture Estimation for C-Band RADARSAT-2 Imagery Over Wheat Fields at Early Growing Stages

Author(s):  
Xiaodong Huang ◽  
Jinfei Wang ◽  
Jiali Shang
2019 ◽  
Vol 574 ◽  
pp. 646-659 ◽  
Author(s):  
Hongtao Shi ◽  
Jie Yang ◽  
Pingxiang Li ◽  
Lingli Zhao ◽  
Zhiqu Liu ◽  
...  

2016 ◽  
Vol 54 (4) ◽  
pp. 2470-2491 ◽  
Author(s):  
Gerardo Di Martino ◽  
Antonio Iodice ◽  
Antonio Natale ◽  
Daniele Riccio

2021 ◽  
Vol 21 (6) ◽  
pp. 4659-4676
Author(s):  
Jonathan V. Trueblood ◽  
Alessia Nicosia ◽  
Anja Engel ◽  
Birthe Zäncker ◽  
Matteo Rinaldi ◽  
...  

Abstract. Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong influence of bulk SSW INPs for the temperatures investigated (T=-18 ∘C for SSAs, T=-15 ∘C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T≥-22 ∘C) INPSSA concentrations are correlated with water-soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,-16C) while cold INPSSA (T<-22 ∘C) are correlated with SSA water-insoluble organic carbon (WIOC) and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INPSSA and SSW nano- and microphytoplankton cell abundances, indicating that these species might be a source of water-insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INPs in marine SSAs, including a single-component model based on POCSSW and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OCSSA content to account for oligotrophy of the Mediterranean Sea. We then compared this formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP emissions into numerical models.


2020 ◽  
Author(s):  
Tengfei Xiao ◽  
Minfeng Xing ◽  
Binbin He

&lt;p&gt;As one of the most important parameters in earth surface, soil moisture plays a crucial role in in many fields, such as agriculture, environment, hydrology, ecology and water management. With the development of earth observation technology, Synthetic Aperture Radar (SAR) provides a powerful method to estimate soil moisture at diverse spatial and temporal scales. However, in agricultural area, soil moisture estimated by SAR often obstructed by vegetation cover. Volume scattering and vegetation attenuation can complex the received SAR backscatter signal when microwave interacts with vegetation canopy. In this study, a model-based polarimetric decomposition and the two-way attenuation parameter in Water Cloud Model (WCM) were adopted to remove the effect of volume scattering and vegetation attenuation respectively. And a deorientation process of SAR data was applied to remove the influence of randomly distributed target angles before polarimetric decomposition. After that, the Dubois model was used to describe the underlying soil backscattering and retrieve soil moisture. Optimal surface roughness was adopted to parameterize the Dubois model due to the difficulty of soil roughness measurement under vegetation cover. This soil moisture estimation method was applied to soybean fields with time-series RADARSAT-2 SAR data. Validation based on in-situ measured soil moisture demonstrates that the proposed method is capable of estimating soil moisture over soybean fields, with Root Mean Square Errors (RMSEs) of 9.2 vol.% and 8.2 vol.% at HH and VV polarization respectively.&lt;/p&gt;


1982 ◽  
Vol 28 (98) ◽  
pp. 91-105 ◽  
Author(s):  
V. N. Nijampurkar ◽  
N. Bhandari ◽  
C. P. Vohra ◽  
V. Krishnan

AbstractSurface and core samples of Neh–nar Glacier in the Kashmir Valley have been analysed for the radionuclides 32Si. 210Pb, 40K, and 137Cs. The lateral and vertical profiles (at an altitude of about 4 140 m) reveal:(1)32Si activity decreasing slowly from the accumulation zone to 4 050 m altitude and then abruptly towards the snout.(2)Five zones of alternating high and low 210Pb activity in the surface samples.(3)An horizon at between 2 and 3 m depth containing 210Pb activity above natural levels. This horizon is also associated with 137Cs and a maximum in total ß activity.The ice samples have been dated on the basis of a simplified two–component model, the “fresh“contribution determined by 2l0Pb and the old component by 32Si. The following conclusions can be drawn from these observations:(1)The model age of the snout ice is c. 850 years.(2)The average rate of ice movement in the lower glacier is about 2 m/year, which compares well with the annual movement rate of 2.65 m/year observed since 1974.


Sign in / Sign up

Export Citation Format

Share Document