Mitigation of Radio Frequency Interference in HFSWR Using Fractional Fourier Transform Based Filtering Algorithms

Author(s):  
Qinxiong Wang ◽  
Zhangyou Chen ◽  
Qing Zhou ◽  
Xiongbin Wu
2019 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Qing Zhou ◽  
Hong Zheng ◽  
Xiongbin Wu ◽  
Xianchang Yue ◽  
Zhangyou Chen ◽  
...  

High-frequency surface wave radar (HF SWR) plays an important role in marine stereoscopic monitoring system. Nevertheless, the congestion of external radio frequency interference (RFI) in HF band degrades its performance seriously. In this article, two novel fractional Fourier transform (FRFT)-based RFI suppression approaches are proposed. One is based on the orthogonal projection of sequences from fractional Fourier domain, and the other is based on singular value decomposition (SVD) of Hankel matrix of sequences from fractional inverse-Fourier domain. Simulation and experimental data collected by HF SWR from Wuhan University were used to test the effectiveness as well as the application condition of the proposed RFI suppression algorithms. The FRFT-based orthogonal projection algorithm is practicable for suppressing stationary RFI with unvaried carrier frequency, while the FRFT-based SVD algorithm is applicable equally for mitigating nonstationary RFI with time-varying carrier frequency or occasional duration time. The processing results may provide useful guidelines for interference suppression of HF SWR, and inspiring the further application of the FRFT-based methods for signal processing.


Author(s):  
Michael Adedosu Adelabu ◽  
Agbotiname Lucky Imoize ◽  
Glory Uzuazobona Ughegbe

Radio frequency interference (RFI) constitutes a significant problem in achieving a good quality of service in radio links. Several techniques have been proposed to identify and mitigate RFI in wireless networks. However, most of these techniques are not generalized for all propagation environments due to their varying geographical features. The need for extensive frequency scan measurements on the links to identify the available channels, evaluate the performances of the links, and detect RFI in the channels becomes imperative. In this study, performance evaluation of frequency scan measurements from active microwave links comprising eighteen base stations is presented. The measurements equipment comprises a spectrum analyzer and a 0.6-meter antenna dish. The frequency scans were taken at 6GHz, 7GHz, and 8GHz with full azimuth coverage of the horizontal and vertical polarization. Measured data were processed to determine the available frequencies and RFI in the channels. The histogram and probability density function of the frequency scans were computed. The cumulative distribution functions were determined, and the statistical error characteristics of the frequency scans for the estimated normal distribution and the estimated fitness curve were derived. The short-time Fourier transform of the noisy signal was obtained, and the signal without noise was recovered using the inverse short-time Fourier transform. Analysis of the scanned signals before and after the noise removal is demonstrated. The denoised signals compare favorably with related results in the preliminary literature. Overall, the frequency scans would be highly useful in evaluating RFI measurements and spectrum planning.


Author(s):  
Rumadi Rumadi ◽  
◽  
Dicka Ariptian Rahayu ◽  
Nur Salma Yusuf Hasanah ◽  
Zhauhar Rainaldy Ardhana ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 165-174
Author(s):  
Aeshah Salem

Background: Possessions of components, described by their shape and size (S&S), are certainly attractive and has formed the foundation of the developing field of nanoscience. Methods: Here, we study the S&S reliant on electronic construction and possession of nanocrystals by semiconductors and metals to explain this feature. We formerly considered the chemical dynamics of mineral nanocrystals that are arranged according to the S&S not only for the big surface area, but also as a consequence of the considerably diverse electronic construction of the nanocrystals. Results: The S&S of models, approved by using the Fractional Fourier Transform Infrared Spectroscopy (FFTIR), indicate the construction of CdSe and ZnSe nanoparticles. Conclusion: In order to study the historical behavior of the nanomaterial in terms of S&S and estimate further results, the FFTIR was used to solve this project.


2020 ◽  
Vol 10 (19) ◽  
pp. 6885
Author(s):  
Sahar Ujan ◽  
Neda Navidi ◽  
Rene Jr Landry

Radio Frequency Interference (RFI) detection and characterization play a critical role in ensuring the security of all wireless communication networks. Advances in Machine Learning (ML) have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep an unavoidable complicated feature extraction step in ML, we propose an efficient Deep Learning (DL)-based methodology using transfer learning to determine both the type of received signals and their modulation type. To this end, the scalogram of the received signals is used as the input of the pretrained convolutional neural networks (CNN), followed by a fully-connected classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi- continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four well-known pretrained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18, for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated at different signal to noise ratios (SNR).


Sign in / Sign up

Export Citation Format

Share Document