Development of Soil Moisture Inversion Model for Bare Soil Using Navigation With Indian Constellation (NavIC)

Author(s):  
Sushant Shekhar ◽  
Rishi Prakash ◽  
Dharmendra Kumar Pandey ◽  
Anurag Vidyarthi ◽  
Shivani Tyagi ◽  
...  
2021 ◽  
Vol 13 (19) ◽  
pp. 4013
Author(s):  
Lili Jing ◽  
Lei Yang ◽  
Wentao Yang ◽  
Tianhe Xu ◽  
Fan Gao ◽  
...  

This article aims to attempt to increase the number of satellites that can be used for monitoring soil moisture to obtain more precise results using GNSS-IR (Global Navigation Satellite System-Interferometric Reflectometry) technology to estimate soil moisture. We introduce a soil moisture inversion model by using GPS SNR (Signal-to-Noise Ratio) data and propose a novel Robust Kalman Filter soil moisture inversion model based on that. We validate our models on a data set collected at Lamasquère, France. This paper also compares the precision of the Robust Kalman Filter model with the conventional linear regression method and robust regression model in three different scenarios: (1) single-band univariate regression, by using only one observable feature such as frequency, amplitude, or phase; (2) dual-band data fusion univariate regression; and (3) dual-band data fusion multivariate regression. First, the proposed models achieve higher accuracy than the conventional method for single-band univariate regression, especially by using the phase as the input feature. Second, dual-band univariate data fusion achieves higher accuracy than single-band and the result of the Robust Kalman Filter model correlates better to the in situ measurement. Third, multivariate variable fusion improves the accuracy for both models, but the Robust Kalman Filter model achieves better improvement. Overall, the Robust Kalman Filter model shows better results in all the scenarios.


2021 ◽  
Vol 13 (2) ◽  
pp. 188
Author(s):  
Tingting Li ◽  
Irena Hajnsek ◽  
Kun-Shan Chen

Soil moisture is one of the vital environmental variables in the land–atmosphere cycle. A study of the sensitivity analysis of bistatic scattering coefficients from bare soil at the Ku-band is presented, with the aim of deepening our understanding of the bistatic scattering features and exploring its potential in soil moisture retrieval. First, a well-established advanced integral method was adopted for simulating the bistatic scattering response of bare soil. Secondly, a sensitivity index and a normalized weight quality index were proposed to evaluate the effect of soil moisture on the bistatic scattering coefficient in terms of polarization and angular diversity, and the combinations thereof. The results of single-polarized VV data show that the regions with the maximum sensitivity and high quality index, simultaneously, to soil moisture are in the forward off-specular direction. However, due to the effect of surface roughness and surface autocorrelation function (ACF), the single-polarized data have some limitations for soil moisture inversion. By contrast, the results of two different polarization combinations, as well as a dual-angular simulation of one transmitter and two receivers, show significant estimation benefits. It can be seen that they all provide better ACF suppression capabilities, larger high-sensitivity area, and higher quality indices compared to single-polarized estimation. In addition, dual polarization or dual angular combined measurement provides the possibility of retrieving soil moisture in backward regions. These results are expected to contribute to the design of future bistatic observation systems.


2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2008 ◽  
Vol 44 (1) ◽  
Author(s):  
L. Ridolfi ◽  
P. D'Odorico ◽  
F. Laio ◽  
S. Tamea ◽  
I. Rodriguez-Iturbe

2021 ◽  
Author(s):  
Yajie Shi ◽  
Yueji Liang ◽  
Chao Ren ◽  
Jianmin Lai ◽  
Qin Ding ◽  
...  

2021 ◽  
pp. 133-144
Author(s):  
Yuhua Zhang ◽  
Lili Jing ◽  
Yanmin Zhao ◽  
Hongliang Ruan ◽  
Lei Yang ◽  
...  

2003 ◽  
Vol 46 (4) ◽  
pp. 489-498 ◽  
Author(s):  
Rogério Teixeira de Faria ◽  
Walter Truman Bowen

The performance of the soil water balance module (SWBM) in the models of DSSAT v3.5 was evaluated against soil moisture data measured in bare soil and dry bean plots, in Paraná, southern Brazil. Under bare soil, the SWBM showed a low performance to simulate soil moisture profiles due to inadequacies of the method used to calculate unsaturated soil water flux. Improved estimates were achieved by modifying the SWBM with the use of Darcy's equation to simulate soil water flux as a function of soil water potential gradient between consecutive soil layers. When used to simulate water balance for the bean crop, the modified SWBM improved soil moisture estimation but underpredicted crop yield. Root water uptake data indicated that assumptions on the original method limited plant water extraction for the soil in the study area. This was corrected by replacing empirical coefficients with measured values of soil hydraulic conductivity at different depths.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xuerui Wu ◽  
Shuanggen Jin

In the past two decades, global navigation satellite system-reflectometry (GNSS-R) has emerged as a new remote sensing technique for soil moisture monitoring. Some experiments showed that the antenna of V polarization is more favorable to receive the reflected signals, and the interference pattern technique (IPT) was used for soil moisture and retrieval of other geophysical parameters. Meanwhile, the lower satellite elevation angles are most impacted by the multipath. However, electromagnetic theoretical properties are not clear for GNSS-R soil moisture retrieval. In this paper, the advanced integral equation model (AIEM) is employed using the wave-synthesis technique to simulate different polarimetric scatterings in the specular directions. Results show when the incident angles are larger than 70°, scattering at RR polarization (the transmitted signal is right-hand circular polarization (RHCP), while the received one is also RHCP) is larger than that at LR polarization (the transmitted signal is RHCP, while the received one is left-hand circular polarization (LHCP)), while scattering at LR polarization is larger than that at RR polarization for the other incident angles (1°∼70°). There is an apparent dip for VV and VR scatterings due to the Brewster angle, which will result in the notch in the final receiving power, and this phenomenon can be used for soil moisture retrieval or vegetation corrections. The volumetric soil moisture (vms) effects on their scattering are also presented. The larger soil moisture will result in lower scattering at RR polarization, and this is very different from the scattering of the other polarizations. It is interesting to note that the surface correlation function only affects the amplitudes of the scattering coefficients at much less level, but it has no effects on the angular trends of RR and LR polarizations.


Sign in / Sign up

Export Citation Format

Share Document