First-order logic vs. fixed-point logic in finite set theory

Author(s):  
A. Atserias ◽  
P.G. Kolaitis
1993 ◽  
Vol 58 (1) ◽  
pp. 291-313 ◽  
Author(s):  
Robert S. Lubarsky

Inductive definability has been studied for some time already. Nonetheless, there are some simple questions that seem to have been overlooked. In particular, there is the problem of the expressibility of the μ-calculus.The μ-calculus originated with Scott and DeBakker [SD] and was developed by Hitchcock and Park [HP], Park [Pa], Kozen [K], and others. It is a language for including inductive definitions with first-order logic. One can think of a formula in first-order logic (with one free variable) as defining a subset of the universe, the set of elements that make it true. Then “and” corresponds to intersection, “or” to union, and “not” to complementation. Viewing the standard connectives as operations on sets, there is no reason not to include one more: least fixed point.There are certain features of the μ-calculus coming from its being a language that make it interesting. A natural class of inductive definitions are those that are monotone: if X ⊃ Y then Γ (X) ⊃ Γ (Y) (where Γ (X) is the result of one application of the operator Γ to the set X). When studying monotonic operations in the context of a language, one would need a syntactic guarantor of monotonicity. This is provided by the notion of positivity. An occurrence of a set variable S is positive if that occurrence is in the scopes of exactly an even number of negations (the antecedent of a conditional counting as a negation). S is positive in a formula ϕ if each occurrence of S is positive. Intuitively, the formula can ask whether x ∊ S, but not whether x ∉ S. Such a ϕ can be considered an inductive definition: Γ (X) = {x ∣ ϕ(x), where the variable S is interpreted as X}. Moreover, this induction is monotone: as X gets bigger, ϕ can become only more true, by the positivity of S in ϕ. So in the μ-calculus, a formula is well formed by definition only if all of its inductive definitions are positive, in order to guarantee that all inductive definitions are monotone.


2003 ◽  
Vol 68 (1) ◽  
pp. 65-131 ◽  
Author(s):  
Andreas Blass ◽  
Yuri Gurevich

AbstractThis paper developed from Shelah's proof of a zero-one law for the complexity class “choiceless polynomial time,” defined by Shelah and the authors. We present a detailed proof of Shelah's result for graphs, and describe the extent of its generalizability to other sorts of structures. The extension axioms, which form the basis for earlier zero-one laws (for first-order logic, fixed-point logic, and finite-variable infinitary logic) are inadequate in the case of choiceless polynomial time; they must be replaced by what we call the strong extension axioms. We present an extensive discussion of these axioms and their role both in the zero-one law and in general.


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


Author(s):  
Jonathan Mai

English distinguishes between singular quantifiers like "a donkey" and plural quantifiers like "some donkeys". Pluralists hold that plural quantifiers range in an unusual, irreducibly plural, way over common objects, namely individuals from first-order domains and not over set-like objects. The favoured framework of pluralism is plural first-order logic, PFO, an interpreted first-order language that is capable of expressing plural quantification. Pluralists argue for their position by claiming that the standard formal theory based on PFO is both ontologically neutral and really logic. These properties are supposed to yield many important applications concerning second-order logic and set theory that alternative theories supposedly cannot deliver. I will show that there are serious reasons for rejecting at least the claim of ontological innocence. Doubt about innocence arises on account of the fact that, when properly spelled out, the PFO-semantics for plural quantifiers is committed to set-like objects. The correctness of my worries presupposes the principle that for every plurality there is a coextensive set. Pluralists might reply that this principle leads straight to paradox. However, as I will argue, the true culprit of the paradox is the assumption that every definite condition determines a plurality.


Author(s):  
John W. Dawson

The greatest logician of the twentieth century, Gödel is renowned for his advocacy of mathematical Platonism and for three fundamental theorems in logic: the completeness of first-order logic; the incompleteness of formalized arithmetic; and the consistency of the axiom of choice and the continuum hypothesis with the axioms of Zermelo–Fraenkel set theory.


2006 ◽  
Vol 71 (1) ◽  
pp. 299-320 ◽  
Author(s):  
James Cheney

AbstractNominal logic is a variant of first-order logic in which abstract syntax with names and binding is formalized in terms of two basic operations: name-swapping andfreshness. It relies on two important principles: equivariance (validity is preserved by name-swapping), and fresh name generation (“new” or fresh names can always be chosen). It is inspired by a particular class of models for abstract syntax trees involving names and binding, drawing on ideas from Fraenkel-Mostowski set theory: finite-support models in which each value can depend on only finitely many names.Although nominal logic is sound with respect to such models, it is not complete. In this paper we review nominal logic and show why finite-support models are insufficient both in theory and practice. We then identify (up to isomorphism) the class of models with respect to which nominal logic is complete: ideal-supported models in which the supports of values are elements of a proper ideal on the set of names.We also investigate an appropriate generalization of Herbrand models to nominal logic. After adjusting the syntax of nominal logic to include constants denoting names, we generalize universal theories to nominal-universal theories and prove that each such theory has an Herbrand model.


1986 ◽  
Vol 2 (3) ◽  
pp. 287-327 ◽  
Author(s):  
Robert Boyer ◽  
Ewing Lusk ◽  
William McCune ◽  
Ross Overbeek ◽  
Mark Stickel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document