scholarly journals Spin–Orbit Torque-Controlled Magnetic Tunnel Junction With Low Thermal Stability for Tunable Random Number Generation

2019 ◽  
Vol 10 ◽  
pp. 1-5 ◽  
Author(s):  
Vaibhav Ostwal ◽  
Joerg Appenzeller
SPIN ◽  
2019 ◽  
Vol 10 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Iman Alibeigi ◽  
Abdolah Amirany ◽  
Ramin Rajaei ◽  
Mahmoud Tabandeh ◽  
Saeed Bagheri Shouraki

Generation of random numbers is one of the most important steps in cryptographic algorithms. High endurance, high performance and low energy consumption are the attractive features offered by the Magnetic Tunnel Junction (MTJ) devices. Therefore, they have been considered as one of the promising candidates for next-generation digital integrated circuits. In this paper, a new circuit design for true random number generation using MTJs is proposed. Our proposed circuit offers a high speed, low power and a truly random number generation. In our design, we employed two MTJs that are configured in special states. Generated random bit at the output of the proposed circuit is returned to the write circuit to be written in the relevant cell for the next random generation. In a random bitstream, all bits must have the same chance of being “0”or “1”. We have proposed a new XOR-based method in this paper to resolve this issue in multiple random generators that produce truly random numbers with a different number of ones and zeros in the output stream. The simulation results using a 45[Formula: see text]nm CMOS technology with a special model of MTJ validated the advantages offered by the proposed circuit.


2014 ◽  
Vol 1 ◽  
pp. 272-275 ◽  
Author(s):  
Vincent Canals ◽  
Antoni Morro ◽  
Josep L. Rosselló

2021 ◽  
Vol 485 ◽  
pp. 126736
Author(s):  
Muhammad Imran ◽  
Vito Sorianello ◽  
Francesco Fresi ◽  
Bushra Jalil ◽  
Marco Romagnoli ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


2015 ◽  
Vol 137 ◽  
pp. 828-836 ◽  
Author(s):  
Che-Chi Shu ◽  
Vu Tran ◽  
Jeremy Binagia ◽  
Doraiswami Ramkrishna

2021 ◽  
Vol 118 (11) ◽  
pp. 112401
Author(s):  
Mahshid Alamdar ◽  
Thomas Leonard ◽  
Can Cui ◽  
Bishweshwor P. Rimal ◽  
Lin Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document