A Tunable Quarter-wavelength Coaxial Filter With Constant Absolute Bandwidth Using a Single Tuning Element

Author(s):  
B. Gowrish ◽  
Raafat R. Mansour
1988 ◽  
Vol 24 (8) ◽  
pp. 495 ◽  
Author(s):  
H. Ishikawa ◽  
K. Kamite ◽  
K. Kihara ◽  
H. Soda ◽  
H. Imai
Keyword(s):  

2016 ◽  
Vol 68 ◽  
pp. 119-127 ◽  
Author(s):  
Hany A. Atallah ◽  
Adel B. Abdel-Rahman ◽  
Kuniaki Yoshitomi ◽  
Ramesh K. Pokharel

2012 ◽  
Vol 571 ◽  
pp. 721-724
Author(s):  
Cai Peng

A miniature ultra-wideband (UWB) bandpass filter using three-quarters wavelength resonators is presented in this paper. Direct-connected feed method is employed between the input/output ports and the resonators in order to overcome the shortcomings due to the gap-coupled feed method and produce two transmission zeros in the lower and upper stopbands. On the other hand, two quarter-wavelength matching transmission lines are introduced to the input/output ports to improve the reflection loss characteristic in the passband of the filter. In addition, the resonators are folded to be open ring structures, which are more miniaturized than the conventional linear structure. As a consequence, the filter is compact in size and exhibits good performance. The filter is successfully realized in theory and verified by full wave EM simulation, and simulated frequency response results show that the fabricated filter has an insertion loss of better than 1dB in the passband and two rejections of greater than 25dB in most of the stopbands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Behdad Jamshidi ◽  
Saeed Roshani ◽  
Jakub Talla ◽  
Sobhan Roshani ◽  
Zdenek Peroutka

AbstractIn the design of a microstrip power divider, there are some important factors, including harmonic suppression, insertion loss, and size reduction, which affect the quality of the final product. Thus improving each of these factors contributes to a more efficient design. In this respect, a hybrid technique to reduce the size and improve the performance of a Wilkinson power divider (WPD) is introduced in this paper. The proposed method includes a typical series LC circuit, a miniaturizing inductor, and two transmission lines, which make an LC branch. Accordingly, two quarter-wavelength branches of the conventional WPD are replaced by two proposed LC branches. Not only does this modification lead to a 100% size reduction, an infinite number of harmonics suppression, and high-frequency selectivity theoretically, but it also results in a noticeable performance improvement practically compared to using quarter-wavelength branches in the conventional microstrip power dividers. The main important contributions of this technique are extreme size reduction and harmonic suppression for the implementation of a filtering power divider (FPD). Furthermore, by tuning the LC circuit, the arbitrary numbers of unwanted harmonics are blocked while the operating frequency, the stopband bandwidth, and the operating bandwidth are chosen optionally. The experimental result verifies the theoretical and simulated results of the proposed technique and demonstrates its potential for improving the performance and reducing the size of other similar microstrip components.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mukesh Kumar Alaria ◽  
Sanjay Kumar Ghosh

Abstract In this paper, two types of coaxial coupler and waveguide coupler for different frequency helix traveling wave tubes (TWTs) are designed, fabricated and cold tested. The coaxial coupler includes of window ceramic and RF transformer section. At present multi-section impedance transformer design approach is used for wideband helix TWTs. In any helix TWT, impedance of the source is transformed to the characteristic impedance of helix. This is done by the quarter-wavelength (λ/4) impedance transformation approach. The simulated results of different types of couplers are carried out by HFSS and CST microwave studio software and compare with experimental results. Three-dimensional electromagnetic field simulators allowing the any geometry with port excitations it is possible to model the complex coaxial and waveguide type couplers with helix SWS assembly and predict its desired return loss performances.


Author(s):  
BRENNO VICTOR LIMA CAMPOS ◽  
Flaianny Bastos Pacheco ◽  
Jose Maria Campos dos Santos

2021 ◽  
Vol 69 (1) ◽  
pp. 1-17
Author(s):  
Frank Simon ◽  
Delphine Sebbane ◽  
surname given-names

Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior. The simplest systems are SDOF-type (single degree of freedom), consisting of a perforated sheet backed with a honeycomb, whose absorption ability is limited to frequencies near the Helmholtz frequency. Thus, to widen the absorption frequency range, manufacturers use a 2DOF (double degree of freedom) system, with an internal layer over another honeycomb (stack of two resonators). However, one constraint is the limited thickness of the overall system, which reduces the space allotted to each honeycomb. A possible approach, based on a previous concept called LEONAR (long elastic open-neck acoustic resonator), could be to link each perforated layer to hollow tubes inserted in each honeycomb layer, in order to shift resonance frequencies to lower frequencies by extending the air column lengths. The presence of an empty chamber on both sides of the internal perforated layer also allows the tube length to be increased through tubes crossing both cavities, preserving the liner thickness. The main aim of this article is to mathematically describe the principle of a 2DOF LEONAR and to show the relevance of the mathematical model through FEM simulations and experiments performed in an impedance tube. Moreover, its behavior is analyzed through a parametric study, in order to explore its potential for an aeronautic application. A remarkable feature of 2DOF LEONAR-type materials with insertion of bottom tubes in the higher cavity is the possibility of maintaining the low frequency band provided by the original LEONAR concept, while adding a second absorption peak at a higher frequency, by the second layer and the accompanying tubes. There is a fundamental difference from classical SDOF/2DOF resonators, for which the thicknesses are obviously different.


Sign in / Sign up

Export Citation Format

Share Document