Doppler Correction in Moving Narrowband Ultrasonic Ranging Sensors for Small-Scale Motion Tracking

2020 ◽  
Vol 4 (9) ◽  
pp. 1-4
Author(s):  
Karalikkadan Ashhar ◽  
Mohammad Omar Khyam ◽  
Md Noor-A-Rahim ◽  
Aruna Jayasuriya ◽  
Soh Cheong Boon
1949 ◽  
Vol 2 (4) ◽  
pp. 451 ◽  
Author(s):  
AA Townsend

Extending previous work on turbulent diffusion in the wake of a circular-cylinder, a series of measurements have been made of the turbulent transport of mean stream momentum, turbulent energy, and heat in the wake of a cylinder of 0.169 cm. diameter, placed in an air-stream of velocity 1280 cm. sec.-1. It has been possible to extend the measurements to 960 diameters down-stream from the cylinder, and it 1s found that, at distances in excess of 600 diameters, the requirements of dynamical similarity are very nearly satisfied. To account for the observed rates of transport of turbulent energy and heat, it is necessary that only part of this transport be due to bulk convection by the slow large-scale motion of the jets of turbulent fluid emitted by the central, fully turbulent core of the wake, which had been supposed previously to perform most of the transport. The remainder of the transport is carried out by the small-scale diffusive motion of the turbulent eddies within the jets, and may be described by assigning diffusion coefficients to the turbulent fluid. It is found that the diffusion coefficients for momentum and heat are approximately equal, but that for turbulent energy is considerably smaller. On the basis of these hypotheses, it is possible to calculate $he form of the mean velocity distribution in good agreement with experiment, and to give a qualitative explanation of the apparently more rapid diffusion of heat.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hongwu Zhu ◽  
Dong Wang ◽  
Nathan Boyd ◽  
Ziyi Zhou ◽  
Lecheng Ruan ◽  
...  

Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundamental yet indispensable functionality for legged robots. However, spinning behaviors of quadruped robots on uneven terrain often exhibit position drifts. Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. A modified spherical foot kinematics representation is proposed to improve the foot kinematic model and rolling dynamics of the quadruped during locomotion. A CoM planner is proposed to generate a stable spinning motion based on projected stability margins. Accurate motion tracking is accomplished with linear quadratic regulator (LQR) to bind the position drift during the spinning movement. Experiments are conducted on a small-scale quadruped robot and the effectiveness of the proposed method is verified on versatile terrains including flat ground, stairs, and slopes.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Francesco Paparella ◽  
Satja Sivcev ◽  
Daniel Toal ◽  
John V. Ringwood

The measurement of the motion of a small-scale wave energy device during wave tank tests is important for the evaluation of its response to waves and the assessment of power production. Usually, the motion of a small-scale wave energy converter (WEC) is measured using an optical motion tracking system with high precision and sampling rate. However, the cost for an optical motion tracking system can be considerably high and, therefore, the overall cost for tank testing is increased. This paper proposes a low-cost capture system composed of an inertial measurement unit and ultrasound sensors. The measurements from the ultrasound sensors are combined optimally with the measurements from the inertial measurement unit through an extended Kalman filter (EKF) in order to obtain an accurate estimation of the motion of a WEC.


Author(s):  
Matthew R. Catlett ◽  
Jason M. Anderson ◽  
James Baeder

2013 ◽  
Vol 731 ◽  
Author(s):  
Grégoire Lemoult ◽  
Jean-Luc Aider ◽  
José Eduardo Wesfreid

AbstractUsing a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.


2019 ◽  
Vol 146 (4) ◽  
pp. 2836-2836
Author(s):  
Matthew R. Catlett ◽  
Jason Anderson ◽  
James Baeder
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4162
Author(s):  
Ma ◽  
Huang ◽  
Li ◽  
Huang ◽  
Ma ◽  
...  

environmental perception technology based onWiFi, and some state-of-the-art techniques haveemerged. The wide application of small-scale motion recognition has aroused people’s concern.Handwritten letter is a kind of small scale motion, and the recognition for small-scale motion basedon WiFi has two characteristics. Small-scale action has little impact on WiFi signals changes inthe environment. The writing trajectories of certain uppercase letters are the same as the writingtrajectories of their corresponding lowercase letters, but they are different in size. These characteristicsbring challenges to small-scale motion recognition. The system for recognizing small-scale motion inmultiple classes with high accuracy urgently needs to be studied. Therefore, we propose MCSM-Wri,a device-free handwritten letter recognition system using WiFi, which leverages channel stateinformation (CSI) values extracted from WiFi packets to recognize handwritten letters, includinguppercase letters and lowercase letters. Firstly, we conducted data preproccessing to provide moreabundant information for recognition. Secondly, we proposed a ten-layers convolutional neuralnetwork (CNN) to solve the problem of the poor recognition due to small impact of small-scaleactions on environmental changes, and it also can solve the problem of identifying actions with thesame trajectory and different sizes by virtue of its multi-scale characteristics. Finally, we collected6240 instances for 52 kinds of handwritten letters from 6 volunteers. There are 3120 instances fromthe lab and 3120 instances are from the utility room. Using 10-fold cross-validation, the accuracyof MCSM-Wri is 95.31%, 96.68%, and 97.70% for the lab, the utility room, and the lab+utility room,respectively. Compared with Wi-Wri and SignFi, we increased the accuracy from 8.96% to 18.13% forrecognizing handwritten letters.


2015 ◽  
Vol 767 ◽  
Author(s):  
Subrahmanyam Duvvuri ◽  
Beverley J. McKeon

AbstractA formal relationship between the skewness and the correlation coefficient of large and small scales, termed the amplitude modulation coefficient, is established for a general statistically stationary signal and is analysed in the context of a turbulent velocity signal. Both the quantities are seen to be measures of phase in triadically consistent interactions between scales of turbulence. The naturally existing phase relationships between large and small scales in a turbulent boundary layer are then manipulated by exciting a synthetic large-scale motion in the flow using a spatially impulsive dynamic wall roughness perturbation. The synthetic scale is seen to alter the phase relationships, or the degree of modulation, in a quasi-deterministic manner by exhibiting a phase-organizing influence on the small scales. The results presented provide encouragement for the development of a practical framework for favourable manipulation of energetic small-scale turbulence through large-scale inputs in a wall-bounded turbulent flow.


2006 ◽  
Vol 44 ◽  
pp. 352-356 ◽  
Author(s):  
Walter N. Meier ◽  
Mingrui Dai

AbstractPassive microwave remote-sensing imagery has proven to be a useful Source for Sea-ICE motions because of its all-sky capabilities. However, the low Spatial resolution of the passive microwave Sensors has not allowed the retrieval of Small-scale motion details Such as lead and ridge formation. The NAsA Earth Observing System Advanced Microwave Scanning Radiometer (AMSR-E) has more than double the Spatial resolution of previous passive microwave Sensors, allowing it to track the formation of moderate-sized leads and yield much more detailed and more accurate ICE-motion estimates. Comparisons with buoys indicate that AMSR-E motions have errors >30% lower than ICE motions derived from the previous passive microwave Sensors. While AMSR-E Still cannot retrieve the Same level of detail as Synthetic aperture radars or visible/infrared Sensors, AMSR-E’s complete coverage can better capture the ephemeral motions of the Sea-ICE cover on daily, and potentially Sub-daily, timescales.


1991 ◽  
Vol 231 ◽  
pp. 257-301 ◽  
Author(s):  
K. J. Nygaard ◽  
A. Glezer

The evolution of streamwise vortices in a plane mixing layer and their role in the generation of small-scale three-dimensional motion are studied in a closed-return water facility. Spanwise-periodic streamwise vortices are excited by a time-harmonic wavetrain with span wise-periodic amplitude variations synthesized by a mosaic of 32 surface film heaters flush-mounted on the flow partition. For a given excitation frequency, virtually any span wise wavelength synthesizable by the heating mosaic can be excited and can lead to the formation of streamwise vortices before the rollup of the primary vortices is completed. The onset of streamwise vortices is accompanied by significant distortion in the transverse distribution of the streamwise velocity component. The presence of inflexion points, absent in corresponding velocity distributions of the unforced flow, suggests the formation of locally unstable regions of large shear in which broadband perturbations already present in the base flow undergo rapid amplification, followed by breakdown to small-scale motion. Furthermore, as a result of spanwise-non-uniform excitation the cores of the primary vortices are significantly altered. The three-dimensional features of the streamwise vortices and their interaction with the base flow are inferred from surfaces of r.m.s. velocity fluctuations and an approximation to cross-stream vorticity using three-dimensional single component velocity data. The striking enhancement of small-scale motion and the spatial modification of its distribution, both induced by the streamwise vortices, can be related to the onset of the mixing transition.


Sign in / Sign up

Export Citation Format

Share Document