optical motion tracking
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 11 (12) ◽  
pp. 5605
Author(s):  
Jose S. Velázquez ◽  
Arsenio M. Iznaga-Benítez ◽  
Amanda Robau-Porrúa ◽  
Francisco L. Sáez-Gutiérrez ◽  
Francisco Cavas

Gait is influenced by many factors, but one of the most prominent ones is shoe heel height. Optical motion tracking technology is widely used to analyze high-heeled gait, but it normally involves several high-quality cameras and licensed software, so clinics and researchers with low budgets cannot afford them. This article presents a simple, effective technique to measure the rotation angles on the sagittal plane of the ankle (tibiotalar) and toe (metatarsophalangeal) joints when no shoes (0 cm heel) and high-heeled shoes (2, 6 and 10 cm heels) are worn. The foot’s position was determined by a set of equations based on its geometry and video analysis techniques with free software (Tracker). An evaluation of the spatio-temporal variables confirmed observations from previous studies: increasing heel heights reduces gait cycle length and speed but does not change cadence. The range of movement at the tibiotalar joint progressively narrowed from 28° when no heel height was worn to 9° when a 10 cm heel was used, and these reductions ranged from 30° to 5° for metatarsophalangeal joints, respectively. This aligns with other authors’ previous studies, and confirms that the proposed method accurately measures kinematic ankle–foot set changes when wearing high heels.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7313
Author(s):  
Chaiyawan Auepanwiriyakul ◽  
Sigourney Waibel ◽  
Joanna Songa ◽  
Paul Bentley ◽  
A. Aldo Faisal

Inertial Measurement Units (IMUs) within an everyday consumer smartwatch offer a convenient and low-cost method to monitor the natural behaviour of hospital patients. However, their accuracy at quantifying limb motion, and clinical acceptability, have not yet been demonstrated. To this end we conducted a two-stage study: First, we compared the inertial accuracy of wrist-worn IMUs, both research-grade (Xsens MTw Awinda, and Axivity AX3) and consumer-grade (Apple Watch Series 3 and 5), and optical motion tracking (OptiTrack). Given the moderate to strong performance of the consumer-grade sensors, we then evaluated this sensor and surveyed the experiences and attitudes of hospital patients (N = 44) and staff (N = 15) following a clinical test in which patients wore smartwatches for 1.5–24 h in the second study. Results indicate that for acceleration, Xsens is more accurate than the Apple Series 5 and 3 smartwatches and Axivity AX3 (RMSE 1.66 ± 0.12 m·s−2; R2 0.78 ± 0.02; RMSE 2.29 ± 0.09 m·s−2; R2 0.56 ± 0.01; RMSE 2.14 ± 0.09 m·s−2; R2 0.49 ± 0.02; RMSE 4.12 ± 0.18 m·s−2; R2 0.34 ± 0.01 respectively). For angular velocity, Series 5 and 3 smartwatches achieved similar performances against Xsens with RMSE 0.22 ± 0.02 rad·s−1; R2 0.99 ± 0.00; and RMSE 0.18 ± 0.01 rad·s−1; R2 1.00± SE 0.00, respectively. Surveys indicated that in-patients and healthcare professionals strongly agreed that wearable motion sensors are easy to use, comfortable, unobtrusive, suitable for long-term use, and do not cause anxiety or limit daily activities. Our results suggest that consumer smartwatches achieved moderate to strong levels of accuracy compared to laboratory gold-standard and are acceptable for pervasive monitoring of motion/behaviour within hospital settings.


2020 ◽  
Vol 44 (2) ◽  
pp. 49-54 ◽  
Author(s):  
Brian P. McHugh ◽  
Amy M. Morton ◽  
Bardiya Akhbari ◽  
Janine Molino ◽  
Joseph J. Crisco

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Roman Gabl ◽  
Jeffrey Steynor ◽  
David Forehand ◽  
Thomas Davey ◽  
Tom Bruce ◽  
...  

Large floating structures, such as liquefied natural gas (LNG) ships, are subject to both internal and external fluid forces. The internal fluid forces may also be detrimental to a vessel’s stability and cause excessive loading regimes when sloshing occurs. Whilst it is relatively easy to measure the motion of external free surface with conventional measurement techniques, the sloshing of the internal free surface is more difficult to capture. The location of the internal free surface is normally extrapolated from measuring the pressure acting on the internal walls of the vessel. In order to understand better the loading mechanisms of sloshing internal fluids, a method of capturing the transient inner free surface motion with negligible affect on the response of the fluid or structure is required. In this paper two methods will be demonstrated for this purpose. The first approach uses resistive wave gauges made of copper tape to quantify the water run-up height on the walls of the structure. The second approach extends the conventional use of optical motion tracking to report the position of randomly distributed free floating markers on the internal water surface. The methods simultaneously report the position of the internal free surface with good agreement under static conditions, with absolute variation in the measured water level of around 4 mm. This new combined approach provides a map of the free surface elevation under transient conditions. The experimental error is shown to be acceptable (low mm-range), proving that these experimental techniques are robust free surface tracking methods in a range of situations.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Francesco Paparella ◽  
Satja Sivcev ◽  
Daniel Toal ◽  
John V. Ringwood

The measurement of the motion of a small-scale wave energy device during wave tank tests is important for the evaluation of its response to waves and the assessment of power production. Usually, the motion of a small-scale wave energy converter (WEC) is measured using an optical motion tracking system with high precision and sampling rate. However, the cost for an optical motion tracking system can be considerably high and, therefore, the overall cost for tank testing is increased. This paper proposes a low-cost capture system composed of an inertial measurement unit and ultrasound sensors. The measurements from the ultrasound sensors are combined optimally with the measurements from the inertial measurement unit through an extended Kalman filter (EKF) in order to obtain an accurate estimation of the motion of a WEC.


2018 ◽  
Vol 43 (7) ◽  
pp. 723-731 ◽  
Author(s):  
Vasiliki Vardakastani ◽  
Hannah Bell ◽  
Sarah Mee ◽  
Gavin Brigstocke ◽  
Angela E. Kedgley

Despite being functionally important, the dart throwing motion is difficult to assess accurately through goniometry. The objectives of this study were to describe a method for reliably quantifying the dart throwing motion using goniometric measurements within a healthy population. Wrist kinematics of 24 healthy participants were assessed using goniometry and optical motion tracking. Three wrist angles were measured at the starting and ending points of the motion: flexion–extension, radial–ulnar deviation and dart throwing motion angle. The orientation of the dart throwing motion plane relative to the flexion–extension axis ranged between 28° and 57° among the tested population. Plane orientations derived from optical motion capture differed from those calculated through goniometry by 25°. An equation to correct the estimation of the plane from goniometry measurements was derived. This was applied and differences in the orientation of the plane were reduced to non-significant levels, enabling the dart throwing motion to be measured using goniometry alone.


2016 ◽  
Author(s):  
Jill Schmidt ◽  
Devin R. Berg

In the field of biomechanics, optical motion tracking systems are commonly used to record human motion and assist in surgical navigation. Recently, motion tracking systems have been used to track implant and bone motion on a micron-level. The present study evaluated four different Optotrak® motion tracking systems to determine the precision, repeatability and accuracy under static testing conditions. The distance between the camera systems and the rigid body, as well as the tilt angle of the rigid body, did affect the resulting precision, repeatability and accuracy of the camera systems. The precision and repeatability, calculated as the within-trial and between-trial standard deviations, respectively, were less than 30 µm; with some configurations producing precision and repeatability less than 1 µm. The accuracy was less than 0.53% of the total displacement for the in-plane motion and less than 1.56% of the total displacement for the out-of-plane motion.


Sign in / Sign up

Export Citation Format

Share Document