scholarly journals Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongwu Zhu ◽  
Dong Wang ◽  
Nathan Boyd ◽  
Ziyi Zhou ◽  
Lecheng Ruan ◽  
...  

Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundamental yet indispensable functionality for legged robots. However, spinning behaviors of quadruped robots on uneven terrain often exhibit position drifts. Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. A modified spherical foot kinematics representation is proposed to improve the foot kinematic model and rolling dynamics of the quadruped during locomotion. A CoM planner is proposed to generate a stable spinning motion based on projected stability margins. Accurate motion tracking is accomplished with linear quadratic regulator (LQR) to bind the position drift during the spinning movement. Experiments are conducted on a small-scale quadruped robot and the effectiveness of the proposed method is verified on versatile terrains including flat ground, stairs, and slopes.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


Author(s):  
T Clarke ◽  
R Davies

This paper describes a robust eigenstructure assignment methodology for a constrained state feedback problem. The method, which is based upon the linear quadratic regulator and involves the minimization, via the genetic algorithm, of a multiobjective cost function, is applied to L1011 Tristar aircraft lateral dynamics. The design example generates a fixed-gain state feedback solution which shows independent phase margins of 51· in each channel, while exhibiting an eigenstructure close to that desired, lying well within specified handling quality requirements. If two states are made unavailable for feedback, the robustness properties are seriously eroded. When a dynamic feedback compensator is then used, there is a substantial recovery of the robustness. It is concluded that the genetic algorithm approach described here is easy to use and generates good multivariable stability margins.


2016 ◽  
Vol 88 (6) ◽  
pp. 810-817 ◽  
Author(s):  
Ilker Murat Koc ◽  
Semuel Franko ◽  
Can Ozsoy

Purpose The purpose of this paper is to investigate the stability of a small scale six-degree-of-freedom nonlinear helicopter model at translator velocities and angular displacements while it is transiting to hover with different initial conditions. Design/methodology/approach In this study, model predictive controller and linear quadratic regulator are designed and compared within each other for the stabilization of the open loop unstable nonlinear helicopter model. Findings This study shows that the helicopter is able to reach to the desired target with good robustness, low control effort and small steady-state error under disturbances such as parameter uncertainties, mistuned controller. Originality/value The purpose of using model predictive control for three axes of the autopilot is to decrease the control effort and to make the close-loop system insensitive against modeling uncertainties.


Author(s):  
Salini S. Nair ◽  
Ranjith Mohan

The paper focuses on analysis of aeromechanical instabilities, specifically ground resonance in helicopters and active control methods for improving the existing stability margins. First, a simplified model of coupled rotor-fuselage system with translational fuselage degrees of freedom and blade lead-lag degree of freedom is considered. Anisotropy is introduced through stiffness variation between blades. Depending on the configuration, appropriate methods are used for stability analysis and to determine frequency coalescence. Second, similar analysis is extended to a model with fuselage pitch, roll and blade flap, lag degrees of freedom and incorporates wake model. The analysis brings out effects of collective pitch and lock number on aeromechanical instabilities with the inclusion of wake model. Active control strategy using pole placement technique and Linear Quadratic Regulator (LQR) is applied to the periodic system. Stabilization is done by increasing the aerodynamic damping through control input given either as cyclic or collective pitch.


Author(s):  
Octavio Narvaez-Aroche ◽  
Andrew Packard ◽  
Pierre-Jean Meyer ◽  
Murat Arcak

A sensitivity-based approach for computing over-approximations of reachable sets, in the presence of constant parameter uncertainty and a single initial state, is used to analyze a three-link planar robot modeling a Powered Lower Limb Orthosis and its user. Given the nature of the mappings relating the state and parameters of the system with the input, and output describing the trajectories of its Center of Mass, reachable sets for their respective spaces can be obtained relying on the sensitivities of the nonlinear closed-loop dynamics in the state space. These over-approximations are used to evaluate the worst-case performances of a finite time horizon linear-quadratic regulator for controlling the ascending phase of the Sit-To-Stand movement.


2013 ◽  
Vol 133 (12) ◽  
pp. 2167-2175 ◽  
Author(s):  
Katsuhiko Fuwa ◽  
Satoshi Murayama ◽  
Tatsuo Narikiyo

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 152
Author(s):  
Litong Lyu ◽  
Xiao Liang ◽  
Jingbo Guo

Segment assembling is one of the principle processes during tunnel construction using shield tunneling machines. The segment erector is a robotic manipulator powered by a hydraulic system to assemble prefabricated concrete segments onto the excavated tunnel surface. Nowadays, automation of the segment erector has become one of the definite developing trends to further improve the efficiency and safety during construction; thus, closed-loop motion control is an essential technology. Within the segment erector, the lifting gantry is driven by dual cylinders to lift heavy segments in the radial direction. Different from the dual-cylinder mechanism used in other machines such as forklifts, the lifting gantry usually works at an inclined angle, leading to unbalanced loads on the two sides. Although strong guide rails are applied to ensure synchronization, the gantry still occasionally suffers from chattering, “pull-and-drag”, or even being stuck in practice. Therefore, precise motion tracking control as well as high-level synchronization of the dual cylinders have become essential for the lifting gantry. In this study, a complete dynamics model of the dual-cylinder lifting gantry is constructed, considering the linear motion as well as the additional rotational motion of the crossbeam, which reveals the essence of poor synchronization. Then, a two-level synchronization control scheme is synthesized. The thrust allocation is designed to coordinate the dual cylinders and keep the rotational angle of the crossbeam within a small range. The motion tracking controller is designed based on the adaptive robust control theory to guarantee the linear motion tracking precision. The theoretical performance is analyzed with corresponding proof. Finally, comparative simulations are conducted and the results show that the proposed scheme achieves high-precision motion tracking performance and simultaneous high-level synchronization of dual cylinders under unbalanced loads.


Sign in / Sign up

Export Citation Format

Share Document