2021 ◽  
pp. 1-17
Author(s):  
Shilin Peng ◽  
Xiao Jiang ◽  
Yongzhen Tang ◽  
Chong Li ◽  
Xiaodong Li ◽  
...  

Abstract Subglacial lake exploration is of great interest to the science community. RECoverable Autonomous Sonde (RECAS) provides an exploration tool to measure and sample subglacial lake environments while the subglacial lake remains isolated from the glacier surface and atmosphere. This paper presents an electronic control system design of 200 m prototype of RECAS. The proposed electronic control system consists of a surface system, a downhole control system, and a power transfer and communication system. The downhole control system is the core element of RECAS, and is responsible for sonde status monitoring, sonde motion control, subglacial water sampling and in situ analysis. A custom RS485 temperature sensor was developed to cater for the limited size and depth requirements of the system. We adopted a humidity-based measurement to monitor for a housing leak. This condition is because standard leak detection monitoring of water conductivity may be inapplicable to pure ice in Antarctica. A water sampler control board was designed to control the samplers and monitor the on/off state. A high-definition camera system with built-in storage and self-heating ability was designed to perform the video recording in the subglacial lake. The proposed electronic control system is proven effective after a series of tests.


2016 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Wisnu Ananda ◽  
Mehammed Nomeri

Battery-powered Electric Vehicles (BEVs) such as electric cars, use the battery as the main power source to drive the motor, in addition to lighting, horn, and other functions. Currently, Balai Besar Bahan dan Barang Teknik (B4T) has been conducting research in Lithium-ion (Li-ion) battery prototype for an electric vehicle. However, the management system in accordance with the electrical characteristics of the battery prototype is still not available. Thus, to integrate the battery prototype with electrical components of the electric vehicle, it is necessary to design Battery Management System (BMS). Two important battery parameters observed are State of Charge (SOC) and State  of  Health  (SOH).  The  method  used  for  SOC  was  Coulomb  Counting.  SOH  was  determined  using  a combination between Support Vector Machine (SVM) and Relevance Vector Machine (RVM). Based on the experiments by using BMS, the battery performance could be more controlled and produces a linear curve of SOC and SOH.Keywords: Battery, electric vehicle, Battery Management System (BMS), Lithium-ion (Li-ion).


Sign in / Sign up

Export Citation Format

Share Document