The pile foundation of high-rise buildings treatment depth optimization in covered karst areas

Author(s):  
Wang Yuanyuan ◽  
Qin Siqingi
Author(s):  
Nusa Setiani Triastuti ◽  
Indriasari Indriasari

<p><em>Pile foundation is one of the solutions of high-rise buildings not in the area of restrict area. When the pile foundation reached until the hard ground reaches, a small settlement is expected and  different  setlement  are  not occur. The objective: analyze the results of loading tests compared carryng capacity calculations, pile cap thick required secure.</em></p><p><em>The research method used in this research is the case study of pile foundation  twelve floors building in Batam island. The reaction on the pile is analyzed using software program of non-linear structure version 9.5 which is supported by primary data, namely loading test and secondary data of soil investigation and the largest column force taken on the pole 1.618,854 ton, Mx -7,936 ton meter, My -75,531 ton meter.</em></p><p><em>Carrying capacity analysis is based on friction and end bearing and calculated pole efficiency. The axial load of the plan is supported by 16 (sixteen) piles, based on the loading test (P) the ultimate pile foundation reaches 200% (two hundred percent) in the amount of 411.52 tons. </em><em>Single pile carrying capacity is 205.76 tons .Settlement in the loading test results 10mm is smaller than from the setlement in calculation results. The stress acting on the pile cap of 12.453 kg/cm<sup>2</sup> is smaller than the permit strees of 13 kg/cm<sup>2</sup>.</em></p>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peisen Wang ◽  
Hongyan Ding ◽  
Puyang Zhang

The differences in development and situation of karst caves lead to two kinds of karst caves, and the karst cave may be on the pile side or at the pile bottom, which has a different influence on the bearing capacity of pile foundation. The paper presents a numerical analysis of the influence of karst caves at pile side on the bearing capacity of super-long pile foundation in karst areas. According to the size of pile foundation of a real bridge project, this paper modelized karst caves and investigated the karst cave from the effect of length, height, and thickness of roof on horizontal and vertical bearing capacity of pile foundation. The main conclusions can be drawn as: when the horizontal displacement at the top of pile foundation is greater than 0.05 m, the horizontal load is correlated positively with the length of karst cave; when the vertical displacement is greater than 0.07 m, the vertical load is correlated negatively with the thickness of the roof of karst cave. However, the height of karst cave has little effect on the bearing capacity; also the existence of karst cave has little influence on the dynamic response of pile foundation. The results of this study can be important with reference to the design and construction of pile foundations in karst areas.


2012 ◽  
Vol 204-208 ◽  
pp. 308-311 ◽  
Author(s):  
Rui Li ◽  
Yi Qiao ◽  
Yong Jie Liu

As the population growth and land resources declining, high-rise building project is increasingly common in the construction work. Through in-depth thinking and active exploration, specific attention to matters of deep foundation pit and pile foundation construction technique, which is the key construction techniques in the high-rise building project, was summarized in this article. It suggests to make a careful and detailed geological survey, and then choose the right design program and develop a reliable construction plans. This scheme was proved to be a useful reference and guidance for the development of high-rise building construction technology.


Author(s):  
D K Fitriyah ◽  
J Propika ◽  
L L Lestari ◽  
H Istiono ◽  
D Pertiwi ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 864-867
Author(s):  
Gao Feng Cui ◽  
Hao Chun Liu ◽  
Yong Tian Geng ◽  
Yi Liu

With development of modern science and technology, pile type and pile foundation type, construction technology and construction equipment, pile foundation theory and design method have large evolution. Pile foundation has been to the ordinary foundation type used in the field with week soil texture for constructing all kinds of buildings, especially for high-rise building, heavy duty factory and the structure with special requirement.


2020 ◽  
Vol 17 (6) ◽  
pp. 754-763
Author(s):  
I. I. Podshivalov ◽  
A. V. Zhuravlev

Relevance. This work is devoted to modeling the stress-strain state of a high-rise brick building on a pile foundation in engineering and geological conditions using the MicroFe design and computing complex, which allows you to create a design scheme in the “base – foundation – building” system using piles in the form of rod end. elements in the soil mass.Goal. Analyzed-deformed state of the system “base – foundation – building”, obtaining the calculated values of tension and reinforcement in the grillage.Materials and methods. The calculation was carried out both in a linear formulation and in a constructively nonlinear formulation with one-sided nonlinear connections between bulk soil elements and pile bar elements. Results. In a nonlinear formulation of the solution to the problem, with a limitation of the permissible design load on the piles, a redistribution of efforts between the piles through the grillage is obtained. Conclusions. Linear calculation is carried out in the case when the greatest forces in the piles do not exceed the specified design load. If this condition is not met, then in the design model, a limitation is introduced on the value of the ultimate load on the piles, equal to the design value, and the calculation is performed considering the constructive nonlinearity of one-sided connections between the pile bar elements and bulk soil elements. Solving the problem in a non-linear formulation allows us to consider the redistribution of efforts between the piles through the grillage, because of which, by changing the location of the piles, it is possible to obtain an optimal design solution for both the pile foundation and the overhead part of the building.


Sign in / Sign up

Export Citation Format

Share Document