scholarly journals Modeling of a brick building of high storeys on a pile foundation

2020 ◽  
Vol 17 (6) ◽  
pp. 754-763
Author(s):  
I. I. Podshivalov ◽  
A. V. Zhuravlev

Relevance. This work is devoted to modeling the stress-strain state of a high-rise brick building on a pile foundation in engineering and geological conditions using the MicroFe design and computing complex, which allows you to create a design scheme in the “base – foundation – building” system using piles in the form of rod end. elements in the soil mass.Goal. Analyzed-deformed state of the system “base – foundation – building”, obtaining the calculated values of tension and reinforcement in the grillage.Materials and methods. The calculation was carried out both in a linear formulation and in a constructively nonlinear formulation with one-sided nonlinear connections between bulk soil elements and pile bar elements. Results. In a nonlinear formulation of the solution to the problem, with a limitation of the permissible design load on the piles, a redistribution of efforts between the piles through the grillage is obtained. Conclusions. Linear calculation is carried out in the case when the greatest forces in the piles do not exceed the specified design load. If this condition is not met, then in the design model, a limitation is introduced on the value of the ultimate load on the piles, equal to the design value, and the calculation is performed considering the constructive nonlinearity of one-sided connections between the pile bar elements and bulk soil elements. Solving the problem in a non-linear formulation allows us to consider the redistribution of efforts between the piles through the grillage, because of which, by changing the location of the piles, it is possible to obtain an optimal design solution for both the pile foundation and the overhead part of the building.

Author(s):  
S. V. Yushchube ◽  
I. I. Podshivalov ◽  
A. S. Larionov

The paper focuses on the pile foundation and footing of the building constructed on a hillside slope and consisting of four three-dimensional blocks. The building is arranged such that to protect the first block constructed on the footslope from the negative technogenic influence of the latter via the embedment of three supporting blocks into the hillside slope. The first three-dimensional block is a three-storey brick building, while the other three are the spatial supporting structures made of insitu reinforced concrete. All the blocks locate at different position levels. The resulting embedded part of the structure matches the class KS-3 construction site safety. It is thus necessary to assess the structural safety of the building constructed in difficult engineering and geological conditions. The MicroFe software is used for finite element dimensional calculations of the pile foundation and footing strength, stability and oscillation after studying the engineering-geological surveys, the analysis of the soil formation, composition and physicalmechanical properties, the piling field. Also, the theoretical model is proposed for the footingfoundation–building system. The obtained results allow assessing the stress-strain state of the pile foundation and footing with the lateral support to the hillside slope of soil.


Author(s):  
Nusa Setiani Triastuti ◽  
Indriasari Indriasari

<p><em>Pile foundation is one of the solutions of high-rise buildings not in the area of restrict area. When the pile foundation reached until the hard ground reaches, a small settlement is expected and  different  setlement  are  not occur. The objective: analyze the results of loading tests compared carryng capacity calculations, pile cap thick required secure.</em></p><p><em>The research method used in this research is the case study of pile foundation  twelve floors building in Batam island. The reaction on the pile is analyzed using software program of non-linear structure version 9.5 which is supported by primary data, namely loading test and secondary data of soil investigation and the largest column force taken on the pole 1.618,854 ton, Mx -7,936 ton meter, My -75,531 ton meter.</em></p><p><em>Carrying capacity analysis is based on friction and end bearing and calculated pole efficiency. The axial load of the plan is supported by 16 (sixteen) piles, based on the loading test (P) the ultimate pile foundation reaches 200% (two hundred percent) in the amount of 411.52 tons. </em><em>Single pile carrying capacity is 205.76 tons .Settlement in the loading test results 10mm is smaller than from the setlement in calculation results. The stress acting on the pile cap of 12.453 kg/cm<sup>2</sup> is smaller than the permit strees of 13 kg/cm<sup>2</sup>.</em></p>


2018 ◽  
Vol 251 ◽  
pp. 04062
Author(s):  
Natalia Kupchikova

The article deals with the problem of determining the stress state of a complex pile structure with end broadening in the form of a sphere in the soil mass in the analytical form by a discrete method. The calculation schemes for determining the stress tensor at the boundary of the pile of square and circular cross-section with expansions in the soil massif are shown. The elements of the polynomial are found by the discrete method in rectangular and spherical coordinates, which is a cumbersome complex mathematical apparatus for a modern design engineer. The stresses are determined. At present, as the analysis has shown, the solution of complex geotechnical problems of soil bases and foundations for different types of loads in numerical modeling is carried out using modern software. Numerical modeling and calculation with the help of specialized software systems allows to consider the system “building-foundation-ground foundation”, as dynamic, integrally developing. However, the interaction of the components of this system requires a theoretical justification of the resistance of foundations in the ground environment, especially in complex engineering-geological conditions.


2011 ◽  
Vol 261-263 ◽  
pp. 1749-1754
Author(s):  
Yu Qi Li ◽  
Tian Quan Weng ◽  
Yi Ran Liu

This paper introduces the hazards of urban land subsidence which caused by excessive extraction of groundwater, the construction of high-rise buildings and excavation, then analyses their mechanisms. It is considered that the essence of land subsidence is due to the soil compaction caused by effective stress augment and the soil loss caused by excavation. Through further analysis of current works, we suggest that regional differences in geological conditions, building loads, repeated action of groundwater withdrawal and recharge, and meso-mechanism of soil particles should be considered when establishing land subsidence model.


2019 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Ольга Хрянина ◽  
Ol'ga Hryanina ◽  
Мария Колесникова ◽  
Maria Kolesnikova

The authors carried out the study of raw materials and their analysis, which allowed to identify the engineering-geological conditions of the construction site and outline the program of scientific and survey works. Full-scale and instrumental examination of the technical condition of the bearing and enclosing structures of the building. It is established that the building structures during operation have not received deformations that prevent normal operating conditions and are currently in satisfactory condition. The strength of concrete Foundation organoleptic and instrumental methods, which showed compliance with the design values. Analysis of verification calculations of the base, a satisfactory condition of the building structures showed that the structural solution of the coating can be changed and performed in kind without strengthening the existing foundations.


Sign in / Sign up

Export Citation Format

Share Document