Design and control of a manipulator arm driven by pneumatic muscle actuators

Author(s):  
Zeljko Situm ◽  
Srecko Herceg
Author(s):  
József Sárosi ◽  
Ján Piteľ ◽  
Jaroslav Šeminský

Pneumatic muscle actuators (PMAs) differ from general pneumatic systems as they have no inner moved parts and there is no sliding on the surfaces. During action they reach high velocities, while the power/weight and power/volume rations reach high levels. The main drawbacks of PMAs are limited contraction (relative displacement), nonlinear and time variable behaviour, existence of hysteresis and step-jump pressure (to start radial diaphragm deformation) and also antagonistic connection of PMAs to generate two-direction motion. These make PMAs difficult to modelling and control. In this paper a new stiffness model and the variable-stiffness spring-like characteristics are described and tested using two Fluidic Muscles made by Festo Company. The muscles have the same diameter, but different length.


Meccanica ◽  
2017 ◽  
Vol 53 (1-2) ◽  
pp. 465-480 ◽  
Author(s):  
George Andrikopoulos ◽  
George Nikolakopoulos

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 35
Author(s):  
Yu Cao ◽  
Zhongzheng Fu ◽  
Mengshi Zhang ◽  
Jian Huang

This paper presents a tracking control method for pneumatic muscle actuators (PMAs). Considering that the PMA platform only feedbacks position, and the velocity and disturbances cannot be observed directly, we use the extended-state-observer (ESO) for simultaneously estimating the system states and disturbances by using measurable variables. Integrated with the ESO, a super twisting controller (STC) is design based on estimated states to realize the high-precision tracking. According to the Lyapunov theorem, the stability of the closed-loop system is ensured. Simulation and experimental studies are conducted, and the results show the convergence of the ESO and the effectiveness of the proposed method.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 134
Author(s):  
Wei Zhao ◽  
Aiguo Song

The pneumatic muscle actuator (PMA) has been widely applied in the researches of rehabilitation robotic devices for its high power to weight ratio and intrinsic compliance in the past decade. However, the high nonlinearity and hysteresis behavior of PMA limit its practical application. Hence, the control strategy plays an important role in improving the performance of PMA for the effectiveness of rehabilitation devices. In this paper, a PMA-based knee exoskeleton based on ergonomics is proposed. Based on the designed knee exoskeleton, a novel proxy-based sliding mode control (PSMC) is introduced to obtain the accurate trajectory tracking. Compared with conventional control approaches, this new PSMC can obtain better performance for the designed PMA-based exoskeleton. Experimental results indicate good tracking performance of this controller, which provides a good foundation for the further development of assist-as-needed training strategies in gait rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document