Distributed Model Predictive Control Algorithm with Communication Delays for a Cooperative Adaptive Cruise Control Vehicle Platoon

Author(s):  
Anca Maxim ◽  
Corneliu Lazar ◽  
Constantin F. Caruntu
2016 ◽  
Vol 49 (7) ◽  
pp. 1079-1084 ◽  
Author(s):  
Anca Maxim ◽  
Clara M. Ionescu ◽  
Constantin F. Caruntu ◽  
Corneliu Lazar ◽  
Robin De Keyser

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wenguang Wu ◽  
Debiao Zou ◽  
Jian Ou ◽  
Lin Hu

The braking quality is considered as the most important performance of the adaptive control system that influences the vehicle safety and ride comfort remarkably. This research is aimed at designing an adaptive cruise control (ACC) system based on active braking algorithm using hierarchical control. Taking into account the vehicle with safety and comfort, the upper decision-making controller is designed based on model predictive control algorithm. Throttle controller and braking controller are designed with feedforward and feedback algorithms as the bottom controller, where the braking controller is designed based on the hydraulic braking model. The whole model is simulated collaboratively with Amesim, Carsim, and Simulink. By comparison with the full deceleration model, the results show that the proposed algorithm can not only make the vehicle maintain a safe distance under the premise of following the target vehicle ahead effectively but also provide favorable driving comfort.


Sign in / Sign up

Export Citation Format

Share Document