BOOST: Transport-Layer Multi-Connectivity Solution for Multi-Wan Routers

Author(s):  
Kariem Fahmi ◽  
Douglas Leith ◽  
Stepan Kucera ◽  
Holger Claussen
Keyword(s):  
2001 ◽  
Vol 708 ◽  
Author(s):  
Mathew K. Mathai ◽  
Keith A. Higginson ◽  
Bing R. Hsieh ◽  
Fotios Papadimitrakopoulos

ABSTRACTIn this paper we report a method for tuning the extent of hole injection into the active light emitting tris- (8-hydroxyquinoline) aluminum (Alq3) layer in organic light emitting diodes (OLEDs). This is made possible by modifying the indium tin oxide (ITO) anode with an oxidized transport layer (OTL) comprising a hole transporting polycarbonate of N,N'-bis(3-hydroxymethyl)-N,N'-bis(phenyl) benzidine and diethylene glycol (PC-TPB-DEG) doped with varying concentrations of antimonium hexafluoride salt of N,N,N',N'-tetra-p-tolyl-4,4'-biphenyldiamine (TMTPD+ SbF6-). The conductivity of the OTL can be changed over three orders of magnitude depending on salt loading. The analysis of hole and electron current variations in these devices indicates that optimizing the conductivity of the OTL enables the modulation of hole injection into the Alq3 layer. The bipolar charge transport properties for OLEDs in which the interfacial carrier injection barriers have been minimized, are governed by the conductivities of the respective layers and in this case it is shown that the variable conductivity of the OTL does allow for better control of the same. Accordingly, varying the concentration of holes in the device indicates that beyond an optimum concentration of holes, further hole injection results in the formation of light quenching cationic species and the initiation of oxidative degradation processes in the Alq3 layer, thus accelerating the intrinsic degradation of these devices. The variable conductivity of the OTL can hence be used to minimize the occurrence of these processes.


2018 ◽  
Vol E101.B (7) ◽  
pp. 1661-1674
Author(s):  
Shohei KAMAMURA ◽  
Aki FUKUDA ◽  
Hiroki MORI ◽  
Rie HAYASHI ◽  
Yoshihiko UEMATSU

Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


2009 ◽  
Author(s):  
C. Roseti ◽  
M. Luglio ◽  
G. Savone ◽  
F. Zampognaro

2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Sign in / Sign up

Export Citation Format

Share Document