Pushing ROS towards the Dark Side: A ROS-based Co-Simulation Architecture for Mixed-Reality Test Systems for Autonomous Vehicles

Author(s):  
Marc Rene Zofka ◽  
Lars Tottel ◽  
Maximilian Zipfl ◽  
Marc Heinrich ◽  
Tobias Fleck ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 926 ◽  
Author(s):  
Pedro-Luis Sanchez-Gonzalez ◽  
David Díaz-Gutiérrez ◽  
Teresa Leo ◽  
Luis Núñez-Rivas

Although maritime transport is the backbone of world commerce, its digitalization lags significantly behind when we consider some basic facts. This work verifies the state-of-the-art as it currently applies to eight digital domains: Autonomous vehicles and robotics; artificial intelligence; big data; virtual reality, augmented and mixed reality; internet of things; the cloud and edge computing; digital security; and 3D printing and additive engineering. It also provides insight into each of the three sectors into which this industry has been divided: Ship design and shipbuilding; shipping; and ports. The work, based on a systematic literature review, demonstrates that there are domains on which almost no formal study has been done thus far and concludes that there are major areas that require attention in terms of research. It also illustrates the increasing interest on the subject, arising from the necessity of raising the maritime transport industry to the same level of digitalization as other industries.


2020 ◽  
Vol 48 (4) ◽  
pp. 357-362
Author(s):  
Balázs Varga ◽  
Mátyás Szalai ◽  
Árpád Fehér ◽  
Szilárd Aradi ◽  
Tamás Tettamanti

Highly automated and autonomous vehicles become more and more widespread changing the classical way of testing and validation. Traditionally, the automotive industry has pursued testing rather in real-world or in pure virtual simulation environments. As a new possibility, mixed-reality testing has also appeared enabling an efficient combination of real and simulated elements of testing. Furthermore, vehicles from different OEMs will have a common interface to communicate with a test system. The paper presents a mixed-reality test framework for visualizing perception sensor feeds real-time in the Unity 3D game engine. Thereby, the digital twin of the tested vehicle and its environment are realized in the simulation. The communication between the sensors of the tested vehicle and the central computer running the test is realized via the standard SENSORIS interface. The paper outlines the hardware and software requirements towards such a system in detail. To show the viability of the system a vehicle in the loop test has been carried out.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Jacqueline A. Towson ◽  
Matthew S. Taylor ◽  
Diana L. Abarca ◽  
Claire Donehower Paul ◽  
Faith Ezekiel-Wilder

Purpose Communication between allied health professionals, teachers, and family members is a critical skill when addressing and providing for the individual needs of patients. Graduate students in speech-language pathology programs often have limited opportunities to practice these skills prior to or during externship placements. The purpose of this study was to research a mixed reality simulator as a viable option for speech-language pathology graduate students to practice interprofessional communication (IPC) skills delivering diagnostic information to different stakeholders compared to traditional role-play scenarios. Method Eighty graduate students ( N = 80) completing their third semester in one speech-language pathology program were randomly assigned to one of four conditions: mixed-reality simulation with and without coaching or role play with and without coaching. Data were collected on students' self-efficacy, IPC skills pre- and postintervention, and perceptions of the intervention. Results The students in the two coaching groups scored significantly higher than the students in the noncoaching groups on observed IPC skills. There were no significant differences in students' self-efficacy. Students' responses on social validity measures showed both interventions, including coaching, were acceptable and feasible. Conclusions Findings indicated that coaching paired with either mixed-reality simulation or role play are viable methods to target improvement of IPC skills for graduate students in speech-language pathology. These findings are particularly relevant given the recent approval for students to obtain clinical hours in simulated environments.


2006 ◽  
Vol 40 (12) ◽  
pp. 30
Author(s):  
BARBARA J. HOWARD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document