AETD: An Application-Aware, Energy-Efficient Trajectory Design for Flying Base Stations

Author(s):  
Shavbo Salehi ◽  
Ayub Bokani ◽  
Jahan Hassan ◽  
Salil S. Kanhere
2020 ◽  
Vol 17 (10) ◽  
pp. 129-141
Author(s):  
Yiwen Nie ◽  
Junhui Zhao ◽  
Jun Liu ◽  
Jing Jiang ◽  
Ruijin Ding

2015 ◽  
Vol 11 (8) ◽  
pp. 108210 ◽  
Author(s):  
Yong-Hoon Choi ◽  
Jungerl Lee ◽  
Juhoon Back ◽  
Suwon Park ◽  
Young-uk Chung ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Nahina Islam ◽  
Kandeepan Sithamparanathan ◽  
Karina Gomez Chavez ◽  
James Scott ◽  
Hamid Eltom

Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jiequ Ji ◽  
Kun Zhu ◽  
Ran Wang ◽  
Bing Chen ◽  
Chen Dai

Caching popular contents at base stations (BSs) has been regarded as an effective approach to alleviate the backhaul load and to improve the quality of service. To meet the explosive data traffic demand and to save energy consumption, energy efficiency (EE) has become an extremely important performance index for the 5th generation (5G) cellular networks. In general, there are two ways for improving the EE for caching, that is, improving the cache-hit rate and optimizing the cache size. In this work, we investigate the energy efficient caching problem in backhaul-aware cellular networks jointly considering these two approaches. Note that most existing works are based on the assumption that the content catalog and popularity are static. However, in practice, content popularity is dynamic. To timely estimate the dynamic content popularity, we propose a method based on shot noise model (SNM). Then we propose a distributed caching policy to improve the cache-hit rate in such a dynamic environment. Furthermore, we analyze the tradeoff between energy efficiency and cache capacity for which an optimization is formulated. We prove its convexity and derive a closed-form optimal cache capacity for maximizing the EE. Simulation results validate the proposed scheme and show that EE can be improved with appropriate choice of cache capacity.


Sign in / Sign up

Export Citation Format

Share Document