Drone Video Object Detection using Convolutional Neural Networks with Time Domain Motion Features

Author(s):  
Yugui Zhang ◽  
Liuqing Shen ◽  
Xiaoyan Wang ◽  
Hai-Miao Hu
2021 ◽  
Vol 11 (6) ◽  
pp. 2738
Author(s):  
Xiangzhou Wang ◽  
Xiaohui Du ◽  
Lin Liu ◽  
Guangming Ni ◽  
Jing Zhang ◽  
...  

Diagnosis of Trichomonas vaginalis infection is one of the most important factors in the routine examination of leucorrhea. According to the motion characteristics of Trichomonas vaginalis, a viable detection method is the use of a microscopic camera to record videos of leucorrhea samples and video object detection algorithms for detection. Most Trichomonas vaginalis is defocused and displays as shadow regions on microscopic images, and it is hard to recognize the movement of shadow regions using traditional video object detection algorithms. In order to solve this problem, we propose two convolutional neural networks based on an encoder-decoder architecture. The first network has the ability to learn the difference between frames and utilizes the image and optical flow information of three consecutive frames as the input to perform rough detection. The second network corrects the coarse contours and uses the image information and the rough detection result of the current frame as the input to perform fine detection. With these two networks applied, the metric value of the mean intersection over union of Trichomonas vaginalis achieves 72.09% on test videos. The proposed networks can effectively detect defocused Trichomonas vaginalis and suppress false alarms caused by the motion of formed elements or impurities.


2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


2019 ◽  
Vol 345 ◽  
pp. 3-14 ◽  
Author(s):  
Guanzhong Tian ◽  
Liang Liu ◽  
JongHyok Ri ◽  
Yong Liu ◽  
Yiran Sun

2017 ◽  
Vol 39 (7) ◽  
pp. 1320-1334 ◽  
Author(s):  
Wanli Ouyang ◽  
Xingyu Zeng ◽  
Xiaogang Wang ◽  
Shi Qiu ◽  
Ping Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document