Generative Models For Low-Rank Video Representation And Reconstruction From Compressive Measurements

Author(s):  
Rakib Hyder ◽  
M. Salman Asif
2019 ◽  
Vol 85 ◽  
pp. 50-59 ◽  
Author(s):  
Tingzhao Yu ◽  
Lingfeng Wang ◽  
Chaoxu Guo ◽  
Huxiang Gu ◽  
Shiming Xiang ◽  
...  

2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


Author(s):  
An Wang ◽  
Donglin Chen ◽  
Shan Cheng ◽  
Xuepeng Jiao ◽  
Wenwei Chen
Keyword(s):  
Flue Gas ◽  

2021 ◽  
Author(s):  
Mathieu Le Provost ◽  
Ricardo Baptista ◽  
Youssef Marzouk ◽  
Jeff Eldredge
Keyword(s):  
Low Rank ◽  

2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 745 ◽  
Author(s):  
Bin WANG ◽  
Yuanyuan WANG ◽  
Wenhua XIAO ◽  
Wei WANG ◽  
Maojun ZHANG

Sign in / Sign up

Export Citation Format

Share Document