Multi-Robot Coverage Path Planning in 3-Dimensional Environments

Author(s):  
Nikolaos Baras ◽  
Minas Dasygenis ◽  
Nikolaos Ploskas
Author(s):  
Prithviraj Dasgupta

The multi-robot coverage path-planning problem involves finding collision-free paths for a set of robots so that they can completely cover the surface of an environment. This problem is non-trivial as the geometry and location of obstacles in the environment is usually not known a priori by the robots, and they have to adapt their coverage path as they discover obstacles while moving in the environment. Additionally, the robots have to avoid repeated coverage of the same region by each other to reduce the coverage time and energy expended. This chapter discusses the research results in developing multi-robot coverage path planning techniques using mini-robots that are coordinated to move in formation. The authors present theoretical and experimental results of the proposed approach using e-puck mini-robots. Finally, they discuss some preliminary results to lay the foundation of future research for improved coverage path planning using coalition game-based, structured, robot team reconfiguration techniques.


Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1144-1166 ◽  
Author(s):  
Héctor Azpúrua ◽  
Gustavo M. Freitas ◽  
Douglas G. Macharet ◽  
Mario F. M. Campos

SUMMARYThe field of robotics has received significant attention in our society due to the extensive use of robotic manipulators; however, recent advances in the research on autonomous vehicles have demonstrated a broader range of applications, such as exploration, surveillance, and environmental monitoring. In this sense, the problem of efficiently building a model of the environment using cooperative mobile robots is critical. Finding routes that are either length or time-optimized is essential for real-world applications of small autonomous robots. This paper addresses the problem of multi-robot area coverage path planning for geophysical surveys. Such surveys have many applications in mineral exploration, geology, archeology, and oceanography, among other fields. We propose a methodology that segments the environment into hexagonal cells and allocates groups of robots to different clusters of non-obstructed cells to acquire data. Cells can be covered by lawnmower, square or centroid patterns with specific configurations to address the constraints of magneto-metric surveys. Several trials were executed in a simulated environment, and a statistical investigation of the results is provided. We also report the results of experiments that were performed with real Unmanned Aerial Vehicles in an outdoor setting.


2021 ◽  
Author(s):  
Leighton Collins ◽  
Payam Ghassemi ◽  
Ehsan T. Esfahani ◽  
David Doermann ◽  
Karthik Dantu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document