An alternative representation of coarse-resolution remote sensing images for time-series processing

Author(s):  
Daniel Kristof
2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4505 ◽  
Author(s):  
Wei Wu ◽  
Xia Sun ◽  
Xianwei Wang ◽  
Jing Fan ◽  
Jiancheng Luo ◽  
...  

Radiometric normalization attempts to normalize the radiomimetic distortion caused by non-land surface-related factors, for example, different atmospheric conditions at image acquisition time and sensor factors, and to improve the radiometric consistency between remote sensing images. Using a remote sensing image and a reference image as a pair is a traditional method of performing radiometric normalization. However, when applied to the radiometric normalization of long time-series of images, this method has two deficiencies: first, different pseudo-invariant features (PIFs)—radiometric characteristics of which do not change with time—are extracted in different pairs of images; and second, when processing an image based on a reference, we can minimize the residual between them, but the residual between temporally adjacent images may induce steep increases and decreases, which may conceal the information contained in the time-series indicators, such as vegetative index. To overcome these two problems, we propose an optimization strategy for radiometric normalization of long time-series of remote sensing images. First, the time-series gray-scale values for a pixel in the near-infrared band are sorted in ascending order and segmented into different parts. Second, the outliers and inliers of the time-series observation are determined using a modified Inflexion Based Cloud Detection (IBCD) method. Third, the variation amplitudes of the PIFs are smaller than for vegetation but larger than for water, and accordingly the PIFs are identified. Last, a novel optimization strategy aimed at minimizing the correction residual between the image to be processed and the images processed previously is adopted to determine the radiometric normalization sequence. Time-series images from the Thematic Mapper onboard Landsat 5 for Hangzhou City are selected for the experiments, and the results suggest that our method can effectively eliminate the radiometric distortion and preserve the variation of vegetation in the time-series of images. Smoother time-series profiles of gray-scale values and uniform root mean square error distributions can be obtained compared with those of the traditional method, which indicates that our method can obtain better radiometric consistency and normalization performance.


2021 ◽  
Vol 13 (19) ◽  
pp. 3842
Author(s):  
Yaxin Ding ◽  
Xiaomei Yang ◽  
Hailiang Jin ◽  
Zhihua Wang ◽  
Yueming Liu ◽  
...  

The use of remote sensing to monitor coastlines with wide distributions and dynamic changes is significant for coastal environmental monitoring and resource management. However, most current remote sensing information extraction of coastlines is based on the instantaneous waterline, which is obtained by single-period imagery. The lack of a unified standard is not conducive to the dynamic change monitoring of a changeable coastline. The tidal range observation correction method can be used to correct coastline observation to a unified climax line, but it is difficult to apply on a large scale because of the distribution of observation sites. Therefore, we proposed a coastline extraction method based on the remote sensing big data platform Google Earth Engine and dense time-series remote sensing images. Through the instantaneous coastline probability calculation system, the coastline information could be extracted without the tidal range observation data to achieve a unified tide level standard. We took the Malay Islands as the experimental area and analyzed the consistency between the extraction results and the existing high-precision coastline thematic products of the same period to achieve authenticity verification. Our results showed that the coastline data deviated 10 m in proportion to a reach of 40% and deviated 50 m within a reach of 89%. The overall accuracy was kept within 100 m. In addition, we extracted 96 additional islands that have not been included in public data. The obtained multi-phase coastlines showed the spatial distribution of the changing hot regions of the Malay Islands’ coastline, which greatly supported our analysis of the reasons for the expansion and retreat of the coastline in this region. These research results showed that the big data platform and intensive time-series method have considerable potential in large-scale monitoring of coastline dynamic change and island reef change monitoring.


Sign in / Sign up

Export Citation Format

Share Document