Low-power and robust on-chip thermal sensing using differential ring oscillators

Author(s):  
Basab Datta ◽  
Wayne Burleson
2011 ◽  
Vol E94-C (10) ◽  
pp. 1698-1701
Author(s):  
Yang SUN ◽  
Chang-Jin JEONG ◽  
In-Young LEE ◽  
Sang-Gug LEE

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Author(s):  
Ezz El-Din Hussein ◽  
Sally Safwat ◽  
Maged Ghoneima ◽  
Yehea Ismail
Keyword(s):  

2008 ◽  
Vol 55 (7) ◽  
pp. 1904-1910 ◽  
Author(s):  
Maged M. Ghoneima ◽  
Muhammad M. Khellah ◽  
James Tschanz ◽  
Yibin Ye ◽  
Nasser Kurd ◽  
...  
Keyword(s):  

2012 ◽  
Vol 73 (3) ◽  
pp. 731-740 ◽  
Author(s):  
Hanen Thabet ◽  
Stéphane Meillère ◽  
Mohamed Masmoudi ◽  
Jean-Luc Seguin ◽  
Hervé Barthelemy ◽  
...  

Author(s):  
N Poornima ◽  
Seetharaman Gopalakrishnan ◽  
Tughrul Arsalan ◽  
T. N. Prabakar ◽  
M. Santhi

Sign in / Sign up

Export Citation Format

Share Document