A low power consumption CMOS differential-ring VCO for a wireless sensor

2012 ◽  
Vol 73 (3) ◽  
pp. 731-740 ◽  
Author(s):  
Hanen Thabet ◽  
Stéphane Meillère ◽  
Mohamed Masmoudi ◽  
Jean-Luc Seguin ◽  
Hervé Barthelemy ◽  
...  
Author(s):  
Hanen Thabet ◽  
Stephane Meillere ◽  
Mohamed Masmoudi ◽  
Jean-Luc Seguin ◽  
Herve Barthelemy ◽  
...  

Author(s):  
Haiying Huang ◽  
Yayu Hew

This paper presents the implementation and characterization of a low power wireless vibration sensor that can be powered by a flash light. The wireless system consists of two components, namely the wireless sensor node and the wireless interrogation unit. The wireless sensor node includes a wireless strain gauge that consumes around 6 mW, a signal modulation circuit, and a light energy harvesting unit. To achieve ultra-low power consumption, the signal modulation circuit was implemented using a voltage-controlled oscillator (VCO) to convert the strain gauge output to an intermediate frequency (IF) signal, which is then used to alter the impedance of the sensor antenna and thus achieves amplitude modulation of the backscattered antenna signal. A generic solar panel with energy harvesting circuit is used to power the strain sensor node continuously. The wireless interrogation unit transmits the interrogation signal and receives the amplitude modulated antenna backscattering, which can be down-converted to recover the IF signal. In order to measure the strains dynamically, a Phase Lock Loop (PLL) circuit was implemented at the interrogator to track the frequency of the IF signal and provide a signal that is directly proportional to the measured strain. The system features ultra-low power consumption, complete wireless sensing, solar powering, and portability. The application of this low power wireless strain system for vibration measurement is demonstrated and characterized.


2021 ◽  
Vol 7 ◽  
pp. e780
Author(s):  
Mostafa Ibrahim Labib ◽  
Mohamed ElGazzar ◽  
Atef Ghalwash ◽  
Sarah Nabil AbdulKader

Wireless sensor networks connect a set of highly flexible wireless devices with small weight and size. They are used to monitor and control the environment by organizing the acquired data at a central device. Constructing fully connected networks using low power consumption sensors, devices, and protocols is one of the main challenges facing wireless sensor networks, especially in places where it is difficult to establish wireless networks in a normal way, such as military areas, archaeological sites, agricultural districts, construction sites, and so on. This paper proposes an approach for constructing and extending Bi-Directional mesh networks using low power consumption technologies inside various indoors and outdoors architectures called “an adaptable Spider-Mesh topology”. The use of ESP-NOW protocol as a communication technology added an advantage of longer communication distance versus a slight increase of consumed power. It provides 15 times longer distance compared to BLE protocol while consuming only twice as much power. Therefore, according to our theoretical and experimental comparisons, the proposed approach could provide higher network coverage while maintaining an acceptable level of power consumption.


Sign in / Sign up

Export Citation Format

Share Document