An on-chip inductive impedance measurement method with adaptive measurement range control for MWM-array based NDE applications

Author(s):  
Yulong Shi ◽  
Degang Chen
2014 ◽  
Vol 21 (3) ◽  
pp. 497-508 ◽  
Author(s):  
Grzegorz Lentka

Abstract The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measurement instrument based on a PSoC (Programmable System on Chip). The obtained calculation simplification recommends the method for implementation in simple portable impedance analyzers destined for operation in the field or embedding in sensors.


2020 ◽  
Vol 140 (3) ◽  
pp. 140-147
Author(s):  
Koji Takechi ◽  
Takeshi Yokoi ◽  
Hiroaki Kakigano

2019 ◽  
Vol 10 (1) ◽  
pp. 293
Author(s):  
In-Gyu Jang ◽  
Sung-Hyun Lee ◽  
Yong-Hwa Park

Time-of-flight (ToF) measurement technology based on the amplitude-modulated continuous-wave (AMCW) model has emerged as a state-of-the-art distance-measurement method for various engineering applications. However, many of the ToF cameras employing the AMCW process phase demodulation sequentially, which requires time latency for a single distance measurement. This can result in significant distance errors, especially in non-static environments (e.g., robots and vehicles) such as those containing objects moving relatively to the sensors. To reduce the measurement time required for a distance measurement, this paper proposes a novel, parallel-phase demodulation method. The proposed method processes phase demodulation of signal in parallel rather than sequentially. Based on the parallel phase demodulation, 2π ambiguity problem is also solved in this work by adopting dual frequency modulation to increase the maximum range while maintaining the accuracy. The performance of proposed method was verified through distance measurements under various conditions. The improved distance measurement accuracy was demonstrated throughout an extended measurement range (1–10 m).


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5932
Author(s):  
José Miguel Madueño Luna ◽  
Antonio Madueño Luna ◽  
Rafael E. Hidalgo Fernández

Electrical impedance has shown itself to be useful in measuring the properties and characteristics of agri-food products: fruit quality, moisture content, the germination capacity in seeds or the frost-resistance of fruit. In the case of olives, it has been used to determine fat content and optimal harvest time. In this paper, a system based on the System on Chip (SoC) AD5933 running a 1024-point discrete Fourier transform (DFT) to return the impedance value as a magnitude and phase and which, working together with two ADG706 analog multiplexers and an external programmable clock based on a synthesized DDS in a FPGA XC3S250E-4VQG100C, allows for the impedance measurement in agri-food products with a frequency sweep from 1 Hz to 100 kHz. This paper demonstrates how electrical impedance is affected by the temperature both in freshly picked olives and in those processed in brine and provides a way to characterize cultivars by making use of only the electrical impedance, neural networks (NN) and the Internet of Things (IoT), allowing information to be collected from the olive samples analyzed both on farms and in factories.


Sign in / Sign up

Export Citation Format

Share Document