High performance 500–750 GHz RF MEMS switch

Author(s):  
Yukang Feng ◽  
N. Scott Barker
2021 ◽  
Vol 2086 (1) ◽  
pp. 012068
Author(s):  
A V Tkachenko ◽  
I E Lysenko ◽  
A V Kovalev ◽  
D V Vertyanov

Abstract This article presents the results of the design and analysis of a radio-frequency switch made using microelectromechanical systems technology. The device is the capacitive switch with a hybrid type of contact, in which the movable electrode of the structure – the metal membrane is part of the microwave signal line of the coplanar waveguide. The switch design is characterized by a high capacitance ratio and low contact resistance. The zig-zag elastic suspension is used to reduce the value of the pull-down voltage – 2 V and the switching time ∼ 7 us. The central resonant frequency of the switch is 3.8 GHz. In this case, in the open state, the value of the insertion loss is not more than -0.2 dB and the isolation value in the close state is not less than -55 dB. The effective frequency range is the S-band, as well as the C-, X- and Ku-band, in which the isolation value is at least -30 dB. The presented inline RF MEMS switch is suitable for use in various types of ground and satellite communications, in particular for devices and systems of 5G mobile networks.


2020 ◽  
Vol 12 ◽  
Author(s):  
Pampa Debnath ◽  
Ujjwal Mondal ◽  
Arpan Deyasi

Aim:: Computation of loss factors for one-bit RF MEMS switch over Ku, K and Ka-band for two different insulating substrates. Objective:: Numerical investigation of return loss, insertion loss, isolation loss are computed under both actuated and unactuated states for two different insulating substrates of the 1-bit RF MEMS switch, and corresponding up and down-capacitances are obtained. Methods:: The unique characteristics of a 1-bit RF MEMS switch of providing higher return loss under both actuated and unactuated states and also of isolation loss with negligible insertion loss makes it as a prime candidate for phase shifter application. This is presented in this manuscript with a keen focus on improvement capability by changing transmission line width, and also of overlap area; where dielectric constant of the substrate also plays a vital role. Results:: The present work exhibits very low down-capacitance over the spectrum whereas considerable amount of up-capacitance. Also when overall performance in terms of all loss parameters are considered, switch provides very low insertion loss, good return loss under actuated state and standard isolation loss. Conclusion:: Reduction of transmission line width of about 33% improved the performance of the switch by increasing isolation loss. Isolation loss of -40 dB is obtained at actuated condition in higher microwave spectra for SiO 2 at higher overlap area. Down capacitance of ~ 1dB is obtained which is novel as compared with other published literature. Moreover, a better combination of both return loss, isolation loss and insertion loss are reported in this present work compared with all other published data so far.


Sign in / Sign up

Export Citation Format

Share Document