A monolithic low-cost 3-dB directional coupler based on silicon image guide (SIG) technology at millimeter-wave band

Author(s):  
Aidin Taeb ◽  
Mohamed Basha ◽  
Suren Gigoyan ◽  
Gholamreza Rafi ◽  
Sujeet Chaudhuri ◽  
...  
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 552
Author(s):  
Juan Andrés Vásquez-Peralvo ◽  
Adrián Tamayo-Domínguez ◽  
Gerardo Pérez-Palomino ◽  
José Manuel Fernández-González ◽  
Thomas Wong

The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite payloads and military applications. However, there is no record of the frequency response in the millimeter-wave band for inductive 3D frequency selective structures implemented by different metallization techniques. For this reason, three different prototypes of dielectric 3D frequency selective structures working in the millimeter-wave band are designed, simulated, and manufactured using VAT photopolymerization. These prototypes are subsequently metallized using metallic paint atomization and electroplating. The manufactured prototypes have been carefully selected, considering their design complexity, starting with the simplest, the square aperture, the medium complexity, the woodpile structure, and the most complex, the torus structure. Then, each structure is measured before and after the metallization process using a measurement bench. The metallization used for the measurement is nickel spray flowed by the copper electroplating. For the electroplating, a detailed table showing the total area to be metallized and the current applied is also provided. Finally, the effectiveness of both metallization techniques is compared with the simulations performed using CST Microwave Studio. Results indicate that a shifted and reduced band-pass is obtained in some structures. On the other hand, for very complex structures, as in the torus case, band-pass with lower loss is obtained using copper electroplating, thus allowing the manufacturing of inductive 3D frequency selective structures in the millimeter-wave band at a low cost.


2021 ◽  
Author(s):  
Ángel Palomares-Caballero ◽  
Antonio Alex-Amor ◽  
Juan Valenzuela-Valdés ◽  
Pablo Padilla

A multilayer aperture antenna array in millimeter-wave band is presented in this article. The antenna array is based on glide-symmetric holey gap-waveguide technology combined with E-plane insertion gaps for a low-cost and low-loss design. The radiating part of the antenna array is formed by an array of sixteen aperture antennas, grouped in four sets of 2x2 antenna subarrays in E-plane configuration. The 2x2 subarrays are fed by a one-to-four corporate feeding network in E-plane with holey gap-waveguide technology. The antenna array has been manufactured with high precision stereolithography (SLA) and subsequent metal plating. This design procedure yields a low-cost and low-weight manufacturing process for functional prototypes. The complete array has been manufactured and measured, comparing its performance with the simulation results. Measurements show an input reflection coefficient below -10 dB which ranges from 68 GHz to 74 GHz. The measured radiation patterns suit adequately the defined ones in the design stage. Moreover, gain above 19 dBi in the entire operating frequency band is achieved with a 74.1% mean antenna efficiency. <br>


2021 ◽  
Author(s):  
Ángel Palomares-Caballero ◽  
Antonio Alex-Amor ◽  
Juan Valenzuela-Valdés ◽  
Pablo Padilla

A multilayer aperture antenna array in millimeter-wave band is presented in this article. The antenna array is based on glide-symmetric holey gap-waveguide technology combined with E-plane insertion gaps for a low-cost and low-loss design. The radiating part of the antenna array is formed by an array of sixteen aperture antennas, grouped in four sets of 2x2 antenna subarrays in E-plane configuration. The 2x2 subarrays are fed by a one-to-four corporate feeding network in E-plane with holey gap-waveguide technology. The antenna array has been manufactured with high precision stereolithography (SLA) and subsequent metal plating. This design procedure yields a low-cost and low-weight manufacturing process for functional prototypes. The complete array has been manufactured and measured, comparing its performance with the simulation results. Measurements show an input reflection coefficient below -10 dB which ranges from 68 GHz to 74 GHz. The measured radiation patterns suit adequately the defined ones in the design stage. Moreover, gain above 19 dBi in the entire operating frequency band is achieved with a 74.1% mean antenna efficiency. <br>


2012 ◽  
Vol E95.C (10) ◽  
pp. 1635-1642 ◽  
Author(s):  
Yuanfeng SHE ◽  
Jiro HIROKAWA ◽  
Makoto ANDO ◽  
Daisuke HANATANI ◽  
Masahiro FUJIMOTO

2017 ◽  
Vol 76 (10) ◽  
pp. 903-918
Author(s):  
A. V. Varavin ◽  
G. P. Ermak ◽  
A. S. Vasilev ◽  
A. V. Fateev ◽  
N. V. Varavin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document