Classification of ECG patterns using fuzzy rules derived from ID3-induced decision trees

Author(s):  
A.M. Bensaid ◽  
N. Bouhouch ◽  
R. Bouhouch ◽  
R. Fellat ◽  
R. Amri
Keyword(s):  
2008 ◽  
pp. 2978-2992
Author(s):  
Jianting Zhang ◽  
Wieguo Liu ◽  
Le Gruenwald

Decision trees (DT) has been widely used for training and classification of remotely sensed image data due to its capability to generate human interpretable decision rules and its relatively fast speed in training and classification. This chapter proposes a successive decision tree (SDT) approach where the samples in the ill-classified branches of a previous resulting decision tree are used to construct a successive decision tree. The decision trees are chained together through pointers and used for classification. SDT aims at constructing more interpretable decision trees while attempting to improve classification accuracies. The proposed approach is applied to two real remotely sensed image datasets for evaluations in terms of classification accuracy and interpretability of the resulting decision rules.


Author(s):  
Charles X. Ling ◽  
John J. Parry ◽  
Handong Wang

Nearest Neighbour (NN) learning algorithms utilize a distance function to determine the classification of testing examples. The attribute weights in the distance function should be set appropriately. We study situations where a simple approach of setting attribute weights using decision trees does not work well, and design three improvements. We test these new methods thoroughly using artificially generated datasets and datasets from the machine learning repository.


2018 ◽  
Vol 41 (8) ◽  
pp. 2185-2195
Author(s):  
Yuliang Cai ◽  
Huaguang Zhang ◽  
Qiang He ◽  
Shaoxin Sun

Based on axiomatic fuzzy set (AFS) theory and fuzzy information entropy, a novel fuzzy oblique decision tree (FODT) algorithm is proposed in this paper. Traditional axis-parallel decision trees only consider a single feature at each non-leaf node, while oblique decision trees partition the feature space with an oblique hyperplane. By contrast, the FODT takes dynamic mining fuzzy rules as a decision function. The main idea of the FODT is to use these fuzzy rules to construct leaf nodes for each class in each layer of the tree; the samples that cannot be covered by the fuzzy rules are then put into an additional node – the only non-leaf node in this layer. Construction of the FODT consists of four major steps: (a) generation of fuzzy membership functions automatically by AFS theory according to the raw data distribution; (b) extraction of dynamically fuzzy rules in each non-leaf node by the fuzzy rule extraction algorithm (FREA); (c) construction of the FODT by the fuzzy rules obtained from step (b); and (d) determination of the optimal threshold [Formula: see text] to generate a final tree. Compared with five traditional decision trees (C4.5, LADtree (LAD), Best-first tree (BFT), SimpleCart (SC) and NBTree (NBT)) and a recently obtained fuzzy rules decision tree (FRDT) on eight UCI machine learning data sets and one biomedical data set (ALLAML), the experimental results demonstrate that the proposed algorithm outperforms the other decision trees in both classification accuracy and tree size.


Sign in / Sign up

Export Citation Format

Share Document