Multi-physics analysis for assembling of nano particle under the mixture condition of the dielectric fluid and AC electric field

Author(s):  
Soon-Geun Kwon ◽  
Soo-Hyun Kim ◽  
Yeong-Eun Yoo ◽  
Eung-Sug Lee ◽  
Chang-Soo Han
2016 ◽  
Vol 9 (6) ◽  
pp. 3073-3086 ◽  
Author(s):  
B. M. Shankar ◽  
J. Kumar ◽  
I. S. Shivakumara ◽  
S. B. Naveen Kumar ◽  
◽  
...  

2016 ◽  
Vol 64 (1) ◽  
pp. 143-149 ◽  
Author(s):  
G.C. Rana ◽  
R. Chand ◽  
V. Sharma

Abstract In this paper the combined effect of uniform rotation and AC electric field on the onset of instability in a horizontal layer of an elastico-viscous fluid stimulated by the dielectrophoretic force due to the variation of dielectric constant with temperature is studied. Walters’ (model B’) fluid model is used to describe rheological behaviour of an elastico-viscous fluid. The onset criterions for stationary and oscillatory convection are derived for the case of free-free boundaries. It is observed that Walters’ (model B’) fluid behaves like an ordinary Newtonian fluid and rotation has stabilizing influence whereas AC electric field has destabilizing influence on the stability of the system. The necessary condition for the occurrence of oscillatory convection is also obtained. The present results are in good agreement with the earlier published results.


2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Mahantesh S. Swamy ◽  
I. S. Shivakumara ◽  
N. B. Naduvinamani

This paper deals with linear and nonlinear stability analyses of thermal convection in a dielectric fluid saturated anisotropic Brinkman porous layer subject to the combined effect of AC electric field and time-periodic gravity modulation (GM). In the realm of linear theory, the critical stability parameters are computed by regular perturbation method. The local nonlinear theory based on truncated Fourier series method gives the information of convection amplitudes and heat transfer. Principle of exchange of stabilities is found to be valid and subcritical instability is ruled out. Based on the governing linear autonomous system several qualitative results on stability are discussed. The sensitive dependence of the solution of Lorenz system of electrothermal convection to the choice of initial conditions points to the possibility of chaos. Low frequency g-jitter is found to have significant stabilizing influence which is in turn diminished by an imposed AC electric field. The role of other governing parameters on the stability threshold and on transient heat transfer is determined.


2015 ◽  
Vol 108 ◽  
pp. 183-191 ◽  
Author(s):  
Reza Riahifar ◽  
Babak Raissi ◽  
Cyrus Zamani ◽  
Ehsan Marzbanrad

2014 ◽  
Vol 99 ◽  
pp. 160-163 ◽  
Author(s):  
Hiroshi Kimura ◽  
Mao Ueno ◽  
Shinya Takahashi ◽  
Akira Tsuchida ◽  
Keiichi Kurosaka

Author(s):  
Madhusmita Mishra ◽  
Anil Krishna Koduri ◽  
Aman Chandra ◽  
D. Roy Mahapatra ◽  
G. M. Hegde

This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV–Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.


Sign in / Sign up

Export Citation Format

Share Document