viscosity change
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 50)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 690
Author(s):  
Su-Young Choi ◽  
Dong-Bum Kim ◽  
Wan-Goo Park ◽  
Jin-Sang Park ◽  
Sang-Keun Oh

This study analyzed the characteristics of viscosity change and oil leakage stability according to the average particle size and content of organic and mineral-based extenders such as CaCO3(CA) and anti-sedimentation (ASE) among materials consisting of bituminous emulsion mastic (BEM). The fabrication of samples for research was done using a melting method of 2L capacity with the production mixing ratio of BEM used in the actual manufacturing process as a standard mixing ratio. Each sample size was adjusted to 16 μm, 5 μm, 2 μm, 1.4 μm and 1 μm, the average particle size of CA as a variable, and the content of ASE for each particle size was set to increase from 1 to 6 times the standard mixing ratio. The analysis found that in all average particle sizes of CA, the viscosity increased as the content of anti-sedimentation increased, and the viscosity was highest at the CA average particle size of 16 μm. The viscosity increased as the average particle size decreased at 5 μm, 2 μm, 1.4 μm and 1 μm. In addition, it was confirmed that the oil leakage stability increased as the average particle size of CA decreased, and the content of ASE increased. The evaluation results showed that specimens that met both workability and oil leakage stability conditions were the specimens with 4 times and 5 times the ASE content at the CA average particle size of 2 μm, and those with twice the ASE content at the CA average particle size of 1.4 μm.


2022 ◽  
Vol 16 (1) ◽  
pp. 23
Author(s):  
Hassan Ghani ◽  
Emad Yousif ◽  
Mohammed Kadhom ◽  
Waled Abdo Ahmed ◽  
Muhammad Rahimi Yusop ◽  
...  

The photostabilization of poly (vinyl chloride) (PVC) film filled with an organotin complex in its structure was examined and compared with the blank PVC film. The organotin (IV) complex that contains 4-(benzylideneamino) benzenesulfonamide as a ligand was synthesized and applied as a PVC photostabilizer. The impact of the complex on the polymer was assessed by comparing the properties of the films with and without the complex, before and after irradiation, using Fourier transform infrared spectroscopy, weight loss, viscosity change, atomic force microscopy, and field emission scanning electron microscopy (FE-SEM). Results showed that the complex film had lower weight loss, gel content, and molecular weight deterioration than the plain PVC film. Also, surfaces of the complexes-filled films were smoother, less lumpy, and more homogeneous. These findings were obtained via the FE-SEM and light microscope images and confirmed by measuring the roughness factor. The organotin (IV) complex proved its activity in delaying the photo-degradation of PVC by several mechanisms. Ultimately, the Tin complex has effectively protected the PVC film against irradiation. The photostabilization of poly (vinyl chloride) (PVC) film filled with an organotin complex in its structure was examined and compared with the blank PVC film. The organotin (IV) complex that contains 4-(benzylideneamino) benzenesulfonamide as a ligand was synthesized and applied as a PVC photostabilizer. The impact of the complex on the polymer was assessed by comparing the properties of the films with and without the complex, before and after irradiation, using Fourier transform infrared spectroscopy, weight loss, viscosity change, atomic force microscopy, and field emission scanning electron microscopy (FE-SEM). Results showed that the complex film had lower weight loss, gel content, and molecular weight deterioration than the plain PVC film. Also, surfaces of the complexes-filled films were smoother, less lumpy, and more homogeneous. These findings were obtained via the FE-SEM and light microscope images and confirmed by measuring the roughness factor. The organotin (IV) complex proved its activity in delaying the photo-degradation of PVC by several mechanisms. Ultimately, the Tin complex has effectively protected the PVC film against irradiation.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4094
Author(s):  
Yu-Ho Wen ◽  
Chen-Chieh Wang ◽  
Guo-Sian Cyue ◽  
Rong-Hao Kuo ◽  
Chia-Hsiang Hsu ◽  
...  

For highly viscous polymer melts, considerable fluid temperature rises produced by viscous heating can be a disturbing factor in viscosity measurements. By scrutinizing the experimental and simulated capillary pressure losses for polymeric liquids, we demonstrate the importance of applying a viscous heating correction to the shear viscosity, so as to correct for large errors introduced by the undesirable temperature rises. Specifically, on the basis of a theoretical derivation and 3-D nonisothermal flow simulation, an approach is developed for retrieving the equivalent shear viscosity in capillary rheometry, and we show that the shear viscosity can be evaluated by using the average fluid temperature at the wall, instead of the bulk temperature, as previously assumed. With the help of a viscous Cross model in analyzing the shear-dominated capillary flow, it is possible to extract the viscous heating contribution to capillary pressure loss, and the general validity of the methodology is assessed using the experiments on a series of thermoplastic melts, including polymers of amorphous, crystalline, and filler-reinforced types. The predictions of the viscous model based on the equivalent viscosity are found to be in good to excellent agreement with experimental pressure drops. For all the materials studied, a near material-independent scaling relation between the dimensionless temperature rise (Θ) and the Nahme number (Na) is found, Θ ~ Na0.72, from which the fluid temperature rise due to viscous heating as well as the resultant viscosity change can be predicted.


2021 ◽  
Author(s):  
Ryo Kimura ◽  
Hidetsugu Kitakado ◽  
Takuya Yamakado ◽  
Hiroyuki Yoshida ◽  
Shohei Saito

Local viscosity change in the thermal phase transition of a nematic liquid crystal, 5CB, has been analyzed by doping fluorescent viscosity probes, flapping fluorophores (FLAP) as well as a molecular rotor BODIPY-C12. As a result, only flapping anthraceneimide has successfully monitored a small viscosity change (corresponding to a few cP (centipoise) change in shear viscosity around 25 cP) in the nematic-to-isotropic phase transition by ratiometric spectroscopy. In addition, analysis of fluorescence anisotropy indicates that the emissive species (planarized flapping anthraceneimides) are aligned parallel to the director of 5CB in the nematic phase.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5906
Author(s):  
István Kertész ◽  
Dávid Nagy ◽  
László Baranyai ◽  
Klára Pásztor-Huszár ◽  
Kinga Varsányi ◽  
...  

Ultrasonic testing is an emerging non-destructive testing technology with high repeatability and precision. Milk is a very complex liquid and the change of its viscosity is a highly relevant property throughout conversion into other dairy products. In the following paper, we propose a novel method for the monitoring of viscosity during enzymatic milk clotting by ultrasonic spectroscopy. An ultrasonic transducer–receiver couple with a 250 kHz nominal frequency was submerged in the samples and an enveloped sweep (“chirp”) signal was applied in a through-transmission mode. Simultaneously, the change in viscosity was measured with a rotational viscometer at a constant shearing speed. The data were analyzed with an algorithm developed by the authors for spectral ultrasonic testing. Estimations yielded a high adjusted R2 (0.963–0.998) and low cross-validated estimation error (RPD: 4.38–14.22), suggesting that the method is suitable for industrial use given the right instrumentation.


Author(s):  
Victor Coppo Leite ◽  
Elia Merzari

Abstract In the present study, we examine in detail the effect of spatially dependent viscosity on wall-bounded flow. For this purpose, Direct Numerical Simulations (DNS) are performed considering a channel flow with a viscosity change along the streamwise direction. The DNS were performed using Nek5000, a computational fluid dynamic code developed at Argonne National Laboratory. The channel is divided in three different regions: in the first one, the flow is at a constant Reynolds number of Re = 5000; in the second region, the Reynolds number is imposed to linearly increase as viscosity decreases through a ramp; finally, in the third region the flow is again at a constant Reynolds number, this time at Re = 10000. Since the temperature field is not evaluated, the proposed set up is a simplification of a heated channel. Nevertheless, the outcomes of this study may be valuable for future works considering variable-viscosity effects, especially for cooling and heating applications. Four test cases with different ramp inclinations were analyzed. The results from the present study were compared with a correlation available in the literature for the friction Reynolds number as a function of the Reynolds number. We observe that in all cases the ramp does not cause an immediate change in the characteristics of turbulent structures and a delay is in fact observed in both wall shear and friction. Finally, in order to characterize and understand these effects, streaks from the viscous region and turbulence statistics for the turbulent kinetic energy budget terms are analyzed.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4924
Author(s):  
Koji Kano ◽  
Hiromi Yatsuda ◽  
Jun Kondoh

Shear horizontal surface acoustic wave (SH-SAW) biosensors measure the reaction of capture antibodies immobilized on the sensing surface to capture test molecules (antigens) by using the change in SH-SAW propagation characteristics. SH-SAW displacement exists not only on the SH-SAW propagating surface, but also partially penetrates the specimen liquid to a certain depth, which is determined by the liquid properties of the specimen and the operating frequency of the SH-SAW. This phenomenon is called viscosity penetration. In previous studies, the effect of viscosity penetration was not considered in the measurement of SH-SAW biosensors, and the mass or viscosity change caused by the specific binding of capture antibodies to the target antigen was mainly used for the measurement. However, by considering the effect of viscosity penetration, it was found that the antigen–antibody reaction could be measured and the detection characteristics of the biosensor could be improved. Therefore, this study aims to evaluate the detection properties of SH-SAW biosensors in the surface height direction by investigating the relationship between molecular dimensions and SH-SAW propagation characteristics, which are pseudo-changed by varying the diameter of gold nanoparticles. For the evaluation, we introduced a layer parameter defined by the ratio of the SH-SAW amplitude change to the SH-SAW velocity change caused by the antigen–antibody reaction. We found a correlation between the layer parameter and pseudo-varied molecular dimensions. The results suggest that SH-SAW does not only measure the mass and viscosity but can also measure the size of the molecule to be detected. This shows that SH-SAW biosensors can be used for advanced functionality.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1696
Author(s):  
Seung Jeong ◽  
Han Jo Jeon ◽  
Kyoung-Je Jang ◽  
Sangbae Park ◽  
Hyuk Soon Choi ◽  
...  

Endoscopic submucosal dissection (ESD) is a surgical procedure to remove early neoplastic lesions in the gastrointestinal tract with the critical issue of perforation. A submucosal fluid cushion, such as normal saline, is used as a cushioning agent to prevent perforation; however, its cushioning maintenance is insufficient for surgery. In this study, we introduce an injectable thermosensitive chitosan solution (CS) with β-glycerophosphate (β-GP) as a submucosal injection agent for ESD. The CS/β-GP system with optimal β-GP concentration showed drastic viscosity change near body temperature while other commercial products did not. Additionally, the injectability of the solution was similar to or greater than other commercial products. The solution with low β-GP concentration showed low cytotoxicity similar to other products. An in vivo preclinical study illustrated maintenance of the high cushioning of the thermosensitive solutions. These results indicate that a CS/β-GP system with optimal β-GP concentration might be used as a submucosal injection agent in ESD, and further studies are needed to validate the effectiveness of the solutions in vivo.


Sign in / Sign up

Export Citation Format

Share Document