The Stability of Natural Convection in a Vertical Layer of Dielectric Fluid in the Presence of a Horizontal ac Electric Field

1984 ◽  
Vol 53 (5) ◽  
pp. 1728-1736 ◽  
Author(s):  
Masaki Takashima ◽  
Hiromitsu Hamabata
2016 ◽  
Vol 9 (6) ◽  
pp. 3073-3086 ◽  
Author(s):  
B. M. Shankar ◽  
J. Kumar ◽  
I. S. Shivakumara ◽  
S. B. Naveen Kumar ◽  
◽  
...  

1996 ◽  
Vol 65 (8) ◽  
pp. 2479-2484 ◽  
Author(s):  
Mohamed A. K. El Adawi ◽  
El Sayed F. El Shehawey ◽  
Safaa A. Shalaby ◽  
Mohamed I. A. Othman

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
B. M. Shankar ◽  
Jai Kumar ◽  
I. S. Shivakumara

The stability of natural convection in a dielectric fluid-saturated vertical porous layer in the presence of a uniform horizontal AC electric field is investigated. The flow in the porous medium is governed by Brinkman–Wooding-extended-Darcy equation with fluid viscosity different from effective viscosity. The resulting generalized eigenvalue problem is solved numerically using the Chebyshev collocation method. The critical Grashof number Gc, the critical wave number ac, and the critical wave speed cc are computed for a wide range of Prandtl number Pr, Darcy number Da, the ratio of effective viscosity to the fluid viscosity Λ, and AC electric Rayleigh number Rea. Interestingly, the value of Prandtl number at which the transition from stationary to traveling-wave mode takes place is found to be independent of Rea. The interconnectedness of the Darcy number and the Prandtl number on the nature of modes of instability is clearly delineated and found that increasing in Da and Rea is to destabilize the system. The ratio of viscosities Λ shows stabilizing effect on the system at the stationary mode, but to the contrary, it exhibits a dual behavior once the instability is via traveling-wave mode. Besides, the value of Pr at which transition occurs from stationary to traveling-wave mode instability increases with decreasing Λ. The behavior of secondary flows is discussed in detail for values of physical parameters at which transition from stationary to traveling-wave mode takes place.


2021 ◽  
pp. 2140009
Author(s):  
Huatan Chen ◽  
Guoyi Kang ◽  
Jiaxin Jiang ◽  
Juan Liu ◽  
Xiang Wang ◽  
...  

Printing orderly patterns on the insulating collector is the key for the development and application of flexible electronics. However, electrospinning on the insulating collector still has the problem of unstable jet due to the charge accumulation. The alternating current (AC)-induced electrohydrodynamic direct-writing (EDW) technology is a good way to decrease the interferences of charge repulsion, which is beneficial to printing orderly micro/nanostructures on the insulating collector. In this work, the sinusoidal AC-induced EDW is used to enhance the stability of charged jet and the deposition behaviors under AC electric field are also studied. The reciprocation transferring of charges induced by the AC electric field decreased the density of the accumulating charges on the insulating collector. The effect of AC electric field parameters on the direct-written micro/nanostructures are investigated to optimize the printing process. As the voltage peak increases, the fiber deposition bandwidth shows a trend of decreasing first and then increasing. Increasing the voltage frequency appropriately is beneficial to decrease the bandwidth of fiber deposition and to increase the stability of the jet. By improving the stability and controllability of the jet printing process, precise micro/nanopatterns can be direct-written on the insulating collector. This research provides a good foundation for expanding the application fields of EDW.


Sign in / Sign up

Export Citation Format

Share Document