Paraffin Wax Enhanced with Carbon Nanostructures as Phase Change Materials: Preparation and Thermal Conductivity Measurement

Author(s):  
Vitaly Zhelezny ◽  
Olga Khliyeva ◽  
Artem Nikulin ◽  
Nikolay Lapardin ◽  
Dmytro Ivchenko ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3280
Author(s):  
Hong Gun Kim ◽  
Yong-Sun Kim ◽  
Lee Ku Kwac ◽  
Mira Park ◽  
Hye Kyoung Shin

This study researches the effect of phase change materials (PCMs) containing carbonized rice husks (CRHs) in wood plastic composites (WPCs) as roof finishing materials on roof-surface and indoor temperatures. A cool roof miniature model was prepared, and measurements were taken using three fixed temperatures of 30 to 32 °C, 35 to 37 °C, and 40 to 42 °C. Sodium sulfate decahydrate (Na2SO4·10H2O) and paraffin wax were selected as the PCMs. CRHs were used as additives to improve the thermal conductivities of the PCMs. At lower fixed temperatures such as 30 to 32 °C and 35 to 37 °C, the rates of increase of the surface temperatures of roofs containing CRHs with Na2SO4·10H2O, and paraffin wax, were observed to gradually decrease compared to those of the roofs without PCMs. The indoor temperatures for the above-mentioned PCMs containing CRHs were maintained to be lower than those of the indoors without PCMs. Additionally, as the CRH content in the PCM increased, the rates of increase of the roof-surface and indoor temperatures decreased due to a faster roof heat absorption by PCMs through the improved thermal conductivity of CRHs. However, under higher artificial temperatures such as 40 to 42 °C, Na2SO4·10H2O with CRHs exhibited no effect due to being out of latent heat range of Na2SO4·H2O. For paraffin wax, as CRH content increased, their roof- surface and indoor temperatures decreased. Especially, the surface temperature of the roof containing paraffin contained 5 wt.% CRHs reduced by 11 °C, and its indoor temperature dropped to 26.4 °C. The thermal conductivity of PCM was enhanced by the addition of CRHs. A suitable PCM selection in each location can result in the reduction of the roof-surface and indoor temperatures.


Author(s):  
Peter J. Sakalaukus ◽  
Andrew Mosley ◽  
Basil I. Farah ◽  
Kuang-Ting Hsiao

Paraffin waxes are commonly used phase change materials for energy storage. However, the low thermal conductivity of the paraffin wax can limit the energy charging and discharging rate. In this research, a new nano-enhanced paraffin wax with dispersed conductive nanoparticles is tested for the thermal conductivity enhancement. A notable increase in the thermal conductivity has been measured from the carbon nanofiber enhanced paraffin wax.


2020 ◽  
Vol 10 (6) ◽  
pp. 817-826
Author(s):  
Fathi S. Soliman ◽  
Heba H. El-Maghrabi ◽  
Tamer Zaki ◽  
Amr A. Nada ◽  
Fouad Zahran

Objective:: Six ultra pure Paraffin Waxes (PW) were successfully fractionated at 35°, 30°, 25°, 20°, 15° and 10°C. The bimetallic oxide (Ferberite) was successfully synthesized by Microwave assisted method. Methods: Enhanced Phase Change Materials (PCMs) were designed by loading W/Fe bimetallic oxides in the ultra pure PW matrix at 1, 2, 3, 4 and 5 wt. %. paraffin wax, W/Fe bimetallic oxide and the resultant composite blends were characterized by X-ray Diffraction (XRD), Gas Chromatography (GC), Deferential Scanning Calorimetry (DSC), Polarized Optical Microscope (POM), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). In addition to testing the thermal conductivity of the designed blends. According to SEM, DSC and POM data, the prepared nanocomposite was homogeneously dispersed into the selected PW matrix. Results: Data revealed that thermal conductivity of the designed composite increases with increasing the loading ratio of W-Fe bimetallic oxides. The total latent heat storage ΔHT of the initial sample was improved from 295.91 J/g to 311.48 J/g at 5 wt. % loading percent. Conclusion:: Thermal conductivity was improved from 8.54 to 21.77 W/m2k with increasing up to 255% in comparison with pure paraffin wax.


2014 ◽  
Vol 104 (26) ◽  
pp. 263103 ◽  
Author(s):  
Abdelhak Saci ◽  
Jean-Luc Battaglia ◽  
Andrzej Kusiak ◽  
Roberto Fallica ◽  
Massimo Longo

Sign in / Sign up

Export Citation Format

Share Document