Inner Current Controls of Grid-Connected PV for Unbalanced Grid Conditions

Author(s):  
Abdulhakim Alsaif ◽  
Zhixin Miao ◽  
Lingling Fan
Keyword(s):  
Author(s):  
Baoling Guo ◽  
Seddik Bacha ◽  
Mazen Alamir ◽  
Julien Pouget

AbstractAn extended state observer (ESO)-based loop filter is designed for the phase-locked loop (PLL) involved in a disturbed grid-connected converter (GcC). This ESO-based design enhances the performances and robustness of the PLL, and, therefore, improves control performances of the disturbed GcCs. Besides, the ESO-based LF can be applied to PLLs with extra filters for abnormal grid conditions. The unbalanced grid is particularly taken into account for the performance analysis. A tuning approach based on the well-designed PI controller is discussed, which results in a fair comparison with conventional PI-type PLLs. The frequency domain properties are quantitatively analysed with respect to the control stability and the noises rejection. The frequency domain analysis and simulation results suggest that the performances of the generated ESO-based controllers are comparable to those of the PI control at low frequency, while have better ability to attenuate high-frequency measurement noises. The phase margin decreases slightly, but remains acceptable. Finally, experimental tests are conducted with a hybrid power hardware-in-the-loop benchmark, in which balanced/unbalanced cases are both explored. The obtained results prove the effectiveness of ESO-based PLLs when applied to the disturbed GcC.


Author(s):  
A. Luna ◽  
K. Lima ◽  
F. Corcoles ◽  
E. Watanabe ◽  
P. Rodriguez ◽  
...  
Keyword(s):  

Author(s):  
Quanrui Hao ◽  
Zheng Li ◽  
Chenjing Yue ◽  
Feng Gao ◽  
Shuying Wang

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3140 ◽  
Author(s):  
Weiming Liu ◽  
Tingting Zheng ◽  
Ziwen Liu ◽  
Zhihua Fan ◽  
Yilong Kang ◽  
...  

This paper presents a power compensation strategy to suppress the double frequency power ripples of Voltage source converter high-voltage direct current (VSC-HVDC) systems under unbalanced grid voltage conditions. The mathematical control equations of the double frequency ripple power of VSC under unbalanced operating conditions are firstly derived and established, where the dynamic behaviors of the double frequency ripples in active and reactive power are regarded as being driven by current-relevant components and voltage-relevant components, respectively. Based on the equations, a power compensation control strategy of VSC-HVDC is proposed via the passivity-based control with disturbance observer to suppress both the current-relevant and voltage-relevant components in the power ripples. With this control strategy, the double frequency ripples in active and reactive power are suppressed simultaneously and system performance is significantly enhanced with the implementation of the disturbance observer in the passivity-based control. Theoretical stability analysis and simulation cases show the effectiveness and superiority of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document