Sensing and determination of contact potential difference between two metals using an actuating capacitor

Author(s):  
C. K. Chung ◽  
W. T. Chang
2009 ◽  
Vol 20 (26) ◽  
pp. 264012 ◽  
Author(s):  
S A Burke ◽  
J M LeDue ◽  
Y Miyahara ◽  
J M Topple ◽  
S Fostner ◽  
...  

2016 ◽  
Vol 53 (6) ◽  
pp. 57-66 ◽  
Author(s):  
O. Vilitis ◽  
M. Rutkis ◽  
J. Busenbergs ◽  
D. Merkulovs

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.


2016 ◽  
Vol 53 (2) ◽  
pp. 48-57 ◽  
Author(s):  
O. Vilitis ◽  
M. Rutkis ◽  
J. Busenberg ◽  
D. Merkulov

Abstract Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measurement system to determine potential difference in real time and at high measurement resolution. Furthermore, using the electrode of a reference probe, the Kelvin method leads to both the indirect measurement of an electronic work function, or a contact potential of sample, and of a surface potential for insulator type samples. In the article, the first part of the research, i.e., the basic principles and prerequisites for establishment of such a measurement system are considered.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1803
Author(s):  
Zhen Zheng ◽  
Junyang An ◽  
Ruiling Gong ◽  
Yuheng Zeng ◽  
Jichun Ye ◽  
...  

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document