Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity

Author(s):  
Chitaranjan Mahapatra ◽  
Keith L. Brain ◽  
Rohit Manchanda
2020 ◽  
Vol 319 (2) ◽  
pp. F257-F283
Author(s):  
John Malysz ◽  
Georgi V. Petkov

Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl− channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.


Sign in / Sign up

Export Citation Format

Share Document