scholarly journals Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease

2020 ◽  
Vol 319 (2) ◽  
pp. F257-F283
Author(s):  
John Malysz ◽  
Georgi V. Petkov

Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl− channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.

2002 ◽  
Vol 119 (6) ◽  
pp. 533-543 ◽  
Author(s):  
Guangju Ji ◽  
Robert J. Barsotti ◽  
Morris E. Feldman ◽  
Michael I. Kotlikoff

Smooth muscle cells undergo substantial increases in length, passively stretching during increases in intraluminal pressure in vessels and hollow organs. Active contractile responses to counteract increased transmural pressure were first described almost a century ago (Bayliss, 1902) and several mechanisms have been advanced to explain this phenomenon. We report here that elongation of smooth muscle cells results in ryanodine receptor–mediated Ca2+ release in individual myocytes. Mechanical elongation of isolated, single urinary bladder myocytes to ∼120% of slack length (ΔL = 20) evoked Ca2+ release from intracellular stores in the form of single Ca2+ sparks and propagated Ca2+ waves. Ca2+ release was not due to calcium-induced calcium release, as release was observed in Ca2+-free extracellular solution and when free Ca2+ ions in the cytosol were strongly buffered to prevent increases in [Ca2+]i. Stretch-induced calcium release (SICR) was not affected by inhibition of InsP3R-mediated Ca2+ release, but was completely blocked by ryanodine. Release occurred in the absence of previously reported stretch-activated currents; however, SICR evoked calcium-activated chloride currents in the form of transient inward currents, suggesting a regulatory mechanism for the generation of spontaneous currents in smooth muscle. SICR was also observed in individual myocytes during stretch of intact urinary bladder smooth muscle segments. Thus, longitudinal stretch of smooth muscle cells induces Ca2+ release through gating of RYR. SICR may be an important component of the physiological response to increases in luminal pressure in smooth muscle tissues.


2011 ◽  
Vol 107 (2) ◽  
pp. 310-317 ◽  
Author(s):  
Xinhua Zhang ◽  
Dwaraka Srinivasa R. Kuppam ◽  
Arnold Melman ◽  
Michael E. DiSanto

2005 ◽  
Vol 25 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Anita S. Mannikarottu ◽  
Michael E. DiSanto ◽  
Stephen A. Zderic ◽  
Alan J. Wein ◽  
Samuel Chacko

2003 ◽  
Vol 138 (5) ◽  
pp. 757-766 ◽  
Author(s):  
Alexandra Wibberley ◽  
Zunxuan Chen ◽  
Erding Hu ◽  
J Paul Hieble ◽  
Timothy D Westfall

2012 ◽  
Vol 48 (2) ◽  
pp. 84-96 ◽  
Author(s):  
Yongmu Zheng ◽  
Shaohua Chang ◽  
Ettickan Boopathi ◽  
Sandra Burkett ◽  
Mary John ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document