scholarly journals A scaling-less Newton-Raphson pipelined implementation for a fixed-point inverse square root operator

Author(s):  
Erwan Libessart ◽  
Matthieu Arzel ◽  
Cyril Lahuec ◽  
Francesco Andriulli
2021 ◽  
pp. 225-234
Author(s):  
Pawan Kumar Pandey ◽  
Dilip Singh ◽  
Rajeevan Chandel

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gayathri R. Prabhu ◽  
Bibin Johnson ◽  
J. Sheeba Rani

A Givens rotation based scalable QRD core which utilizes an efficient pipelined and unfolded 2D multiply and accumulate (MAC) based systolic array architecture with dynamic partial reconfiguration (DPR) capability is proposed. The square root and inverse square root operations in the Givens rotation algorithm are handled using a modified look-up table (LUT) based Newton-Raphson method, thereby reducing the area by 71% and latency by 50% while operating at a frequency 49% higher than the existing boundary cell architectures. The proposed architecture is implemented on Xilinx Virtex-6 FPGA for any real matrices of sizem×n, where4≤n≤8andm≥nby dynamically inserting or removing the partial modules. The evaluation results demonstrate a significant reduction in latency, area, and power as compared to other existing architectures. The functionality of the proposed core is evaluated for a variable length adaptive equalizer.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 554-567 ◽  
Author(s):  
Dietrich Ristow ◽  
Thomas Rühl

We show that 3-D implicit finite‐difference schemes can be realized by multiway splitting in such a way that the steep dip problem and the problem of numerical anisotropy are overcome. The basic idea is as follows. We approximate the 3-D square root operator by a sequence of 2-D operators in three, four, or six directions to solve the azimuth symmetry problem. Each 2-D square root operator is then approximated by a sequence of implicit 2-D operators to improve steep dip accuracy. This sequence contains some unknown coefficients, which are calculated by a Taylor expansion technique or by an optimization technique. In the Taylor expansion method, the square root and its approximation are expanded into power series. By comparing the terms, the unknown coefficients are calculated. The more 2-D finite‐difference operators for cascading are taken and the more directions for downward continuation are chosen, the more terms from power series can be compared to obtain a higher‐degree migration operator with better circular symmetry. In the second method, optimized coefficients are calculated by an optimization procedure whereby a variation of all unknown coefficients is performed, in such a way that both the sum of all deviations between the correct square root and its approximation and the sum of all deviations from azimuth symmetry are minimized. A mathematical criterion for azimuth symmetry has been defined and incorporated into the opfimization procedure.


2004 ◽  
Vol 12 (01) ◽  
pp. 55-66 ◽  
Author(s):  
JIANXIN ZHU ◽  
YA YAN LU

Numerical solutions of the Helmholtz equation and the one-way Helmholtz equation are compared in the weak range dependence limit, where the overall range distance is increased while the range dependence is weakened. It is observed that the difference between the solutions of these two equations persists in this limit. The one-way Helmholtz equation involves a square root operator and it can be further approximated by various one-way models used in underwater acoustics. An operator marching method based on the Dirichlet-to-Neumann map and a local orthogonal transform is used to solve the Helmholtz equation.


2010 ◽  
Vol 57 (8) ◽  
pp. 627-631 ◽  
Author(s):  
Dong Wang ◽  
Miloš D Ercegovac ◽  
Nanning Zheng

2020 ◽  
Vol 28 (01) ◽  
pp. 91-110
Author(s):  
PRABIR CHAKRABORTY ◽  
UTTAM GHOSH ◽  
SUSMITA SARKAR

In this paper, we have considered a discrete prey–predator model with square-root functional response and optimal harvesting policy. This type of functional response is used to study the dynamics of the prey–predator model where the prey population exhibits herd behavior, i.e., the interaction between prey and predator occurs along the boundary of the population. The considered population model has three fixed points; one is trivial, the second one is axial and the last one is an interior fixed point. The first two fixed points are always feasible but the last one depends on the parameter value. The interior fixed point experiences the flip and Neimark–Sacker bifurcations depending on the predator harvesting coefficient. Finally, an optimal harvesting policy has been introduced and the optimal value of the harvesting coefficient is determined.


Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1394-1399 ◽  
Author(s):  
Thomas Rühl

Finite‐difference (FD) migration is one of the most often used standard migration methods in practice. The merit of FD migration is its ability to handle arbitrary laterally and vertically varying macro velocity fields. The well‐known disadvantage is that wave propagation is only performed accurately in a more or less narrow cone around the vertical. This shortcoming originates from the fact that the exact one‐way wave equation can be implemented only approximately in finite‐difference schemes because of economical reasons. The Taylor or continued fraction expansion of the square root operator in the one‐way wave equation must be truncated resulting in an approximate version of the one‐way wave equation valid only for a restricted angle range.


Sign in / Sign up

Export Citation Format

Share Document