Simulation Studies For A New high-resolution Positron Tomograph

Author(s):  
C.E. Ordonez ◽  
D.L. Gunter ◽  
N.J. Yasillo ◽  
C.-T. Chen ◽  
R.N. Beck
2016 ◽  
Author(s):  
Max Zwiessele ◽  
Neil D Lawrence

AbstractWe present an approach to estimating the nature of the Waddington (or epigenetic) landscape that underlies a population of individual cells. Through exploiting high resolution single cell transcription experiments we show that cells can be located on a landscape that reflects their differentiated nature.Our approach makes use of probabilistic non-linear dimensionality reduction that respects the topology of our estimated epigenetic landscape. In simulation studies and analyses of real data we show that the approach, known as topslam, outperforms previous attempts to understand the differentiation landscape.Hereby, the novelty of our approach lies in the correction of distances before extracting ordering information. This gives the advantage over other attempts, which have to correct for extracted time lines by post processing or additional data.


2012 ◽  
Vol 60 (5) ◽  
pp. 862-868 ◽  
Author(s):  
Young-Jin Lee ◽  
Hyun-Ju Ryu ◽  
Hyo-Min Cho ◽  
Seung-Wan Lee ◽  
Yu-Na Choi ◽  
...  

2012 ◽  
Vol 8 (S295) ◽  
pp. 13-16 ◽  
Author(s):  
Leila C. Powell ◽  
Frederic Bournaud ◽  
Damien Chapon ◽  
Julien Devriendt ◽  
Volker Gaibler ◽  
...  

AbstractThe quest for a better understanding of the evolution of massive galaxies can be broadly summarised with 2 questions: how did they build up their large (stellar) masses and what eventually quenched their star formation (SF)? To tackle these questions, we use high-resolution ramses simulations (Teyssier 2002) to study several aspects of the detailed interplay between accretion (mergers and cold flows), SF and feedback in individual galaxies. We examine SF in major mergers; a process crucial to stellar mass assembly. We explore whether the merger-induced, clustered SF is as important a mechanism in average mergers, as it is in extreme systems like the Antennae. We find that interaction-induced turbulence drives up the velocity dispersion, and that there is a correlated rise in SFR in all our simulated mergers as the density pdf evolves to have an excess of very dense gas. Next, we introduce a new study into whether mechanical jet feedback can impact upon the ability of hot gas haloes to provide a supply of fuel for SF during mergers and in their remnants. Finally, we briefly review our recent study, in which we examine the effect of supernova (SN) feedback on galaxies accreting via the previously overlooked cold-mode, by resimulating a stream-fed galaxy at z ~ 9. A far-reaching galactic wind results yet it cannot suppress the cold, filamentary accretion or eject significant mass in order to reduce the SFR, suggesting that SN feedback may not be as effective as is often assumed.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


Sign in / Sign up

Export Citation Format

Share Document