Opto-electrical characteristics of Si-based blocked-impurity-band detector: Experiment and simulation

Author(s):  
Xiaodong Wang ◽  
Bingbing Wang ◽  
Liwei Hou ◽  
Wei Xie ◽  
Xiaoyao Chen ◽  
...  
2001 ◽  
Vol 90 (8) ◽  
pp. 3993-3997 ◽  
Author(s):  
L. Essaleh ◽  
S. M. Wasim ◽  
J. Galibert

Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


1976 ◽  
Vol 37 (C4) ◽  
pp. C4-333-C4-336
Author(s):  
M. AVEROUS ◽  
J. CALAS ◽  
C. FAU

MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3153-3161
Author(s):  
Marco Antonio Juárez Sánchez ◽  
Miguel Ángel Meléndez Lira ◽  
Celestino Odín Rodríguez Nava

AbstractDrug contamination in water is one of the current fields of study. Since 1990, the presence of drugs in drinking water has been a concern to scientists and public. In Mexico, these organic compounds are not efficiently removed in wastewater treatment plants; therefore, alternative methodologies have been studied that allow these compounds to have a high percentage of degradation or be completely degraded. One example of these techniques is heterogeneous photocatalysis which has obtained positive results in the degradation of drugs using ZnO nanoparticles. These are commonly selected for their electrical characteristics, even though they disperse in water and an additional unit operation is required to separate them from the liquid medium. To eliminate drugs with nano particles in a single stage, polycaprolactone-based membranes with adhered ZnO nanoparticles, by means of electrospinning, were prepared to degrade drugs such as diclofenac. The technique used has shown to efficiently break down diclofenac in 4 hours according to the capillary electrophoresis readings.


Author(s):  
Satoshi Taniguchi ◽  
Norihiko Yamaguchi ◽  
Takao Miyajima ◽  
Masao Ikeda

Sign in / Sign up

Export Citation Format

Share Document