Study On Wave Energy Absorption System with the Plural Oscillating Water Columns

Author(s):  
Y. Suenaga ◽  
N. Takagi ◽  
M. Sakuta
Author(s):  
J. C. C. Portillo ◽  
J. C. C. Henriques ◽  
R. P. F. Gomes ◽  
L. M. C. Gato ◽  
A. F. O. Falcão

This work focuses on the initial performance assessment of an array of coaxial-duct (CD) oscillating-water-columns (owc’s) with potential to be used as multipurpose platform for the creation of value in a diverse range of offshore economic activities. The coaxial-duct owc (CD-owc) is an axisymmetric oscillating-water-column wave energy converter that has been studied for both small-size and large-size applications. This work focuses on buoys of 12 meter diameter distributed in an array of five devices, rigidly attached to each other, to form a cluster of owc’s. The objective of the study is to assess the performance of the array with this configuration and estimate the effect of parameters such as distance between devices, various modes of movements, and other constraints on the overall power output of the array. Results of different cases are compared to the performance of an isolated device to determine the interference effect of other devices. Some results validate previous research conclusions and new findings on the behavior coaxial-duct owc are presented.


Author(s):  
Wanan Sheng ◽  
Ray Alcorn ◽  
Tony Lewis

Oscillating water column (OWC) wave energy converters (WECs) are probably the simplest and most promising wave energy converters due to their good feasibility, reliability and survivability in practical wave energy conversions and also regarded as the most studied and developed when compared to other types of the wave energy converters. This research aims to develop a reliable numerical tool to assess the performance of the OWC wave energy converters, particularly in the primary wave energy conversion. In the numerical assessment tool, the hydrodynamics of the device and thermodynamics of the air chamber can be studied separately. However, for the complete dynamic system when a power takeoff (PTO) system is applied, these two dynamic systems are fully coupled in time-domain, in which the PTO can have a simple mathematical expression as the relation between the pressure difference across the PTO (the chamber pressure) and its flowrate through the PTO. And the application of a simple PTO pressure-flowrate relation very much simplifies the complicated aerodynamics and thermodynamics in the air turbine system so the whole dynamic system can be simplified. The methodology has been applied to a generic OWC device and the simulation results have been compared to the experimental data. It is shown that the developed numerical method is reliable in and capable of assessing the primary wave energy conversion of oscillating water columns.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1278 ◽  
Author(s):  
Gimara Rajapakse ◽  
Shantha Jayasinghe ◽  
Alan Fleming

Oscillating water column wave energy converter arrays can be arranged to enhance the energy production and quality of power delivered to the grid. This study investigates four different array configurations of vented oscillating water columns and their effect on power quality and capacity of the energy storage systems required to absorb power fluctuation. Configuring the array of vented oscillating water columns as a nearshore detached breakwater allows combining the benefits of their complementary features. This increases the economic optimization of wave energy converters, paving the path to the energy market. The operations of the integration schemes are evaluated using the results obtained from simulations carried out using MATLAB/Simulink software. Simulation results show that the array of vented oscillating water columns and array of vented oscillating water columns as nearshore detached breakwater configurations increase the quality of power delivered to the grid and reduce the capacity of the energy storage systems required.


Sign in / Sign up

Export Citation Format

Share Document