The influence of rainfall upon Scatterometer estimates for sea surface stress: Applications to boundary layer parameterization and drag coefficient models within tropical cyclone environments

Author(s):  
D E Weissman ◽  
H R Winterbottom ◽  
M A Bourassa
1968 ◽  
Vol 49 (3) ◽  
pp. 247-253 ◽  
Author(s):  
E. B. Kraus

A simple sampling experiment gives a several octave range of values for the zonal surface stress obtainable from synoptic maps over the North Atlantic. Uncertainty about the value of the drag coefficient account for about half the variance. The different methods that have been used to specify this quantity are reviewed and an attempt is made to state explicitly the assumptions involved in each case.


2006 ◽  
Vol 19 (8) ◽  
pp. 1557-1566 ◽  
Author(s):  
R. M. Samelson ◽  
E. D. Skyllingstad ◽  
D. B. Chelton ◽  
S. K. Esbensen ◽  
L. W. O'Neill ◽  
...  

Abstract A simple quasi-equilibrium analytical model is used to explore hypotheses related to observed spatial correlations between sea surface temperatures and wind stress on horizontal scales of 50–500 km. It is argued that a plausible contributor to the observed correlations is the approximate linear relationship between the surface wind stress and stress boundary layer depth under conditions in which the stress boundary layer has come into approximate equilibrium with steady free-atmospheric forcing. Warmer sea surface temperature is associated with deeper boundary layers and stronger wind stress, while colder temperature is associated with shallower boundary layers and weaker wind stress. Two interpretations of a previous hypothesis involving the downward mixing of horizontal momentum are discussed, and it is argued that neither is appropriate for the warm-to-cold transition or quasi-equilibrium conditions, while one may be appropriate for the cold-to-warm transition. Solutions of a turbulent large-eddy simulation numerical model illustrate some of the processes represented in the analytical model. A dimensionless ratio γτA is introduced to measure the relative influence of lateral momentum advection and local surface stress on the boundary layer wind profile. It is argued that when γτA < 1, and under conditions in which the thermodynamically induced lateral pressure gradients are small, the boundary layer depth effect will dominate lateral advection and control the surface stress.


2020 ◽  
Author(s):  
Hiroki Okachi ◽  
Tomohito Yamada

<p>   Typhoon intensity changes according to the momentum and enthalpy flux supplied from the boundary layer. MPI theory uses the ratio between a drag coefficient and an enthalpy exchange coefficient, which are indexes that indicate how much momentum or enthalpy is exchanged between the air and the sea. Each is a coefficient depending on wind speed, temperature and SST.</p><p>However, Lighthill (1999) is shown that latent heat exchange varies because sea spray generated from the sea surface evaporates in the boundary layer. In addition, Barenblatt (2005), inspired by Lighthill (1999), showed that the Karman constant changes according to the Froude number and the drag coefficient changes. Since both changes can change the MPI theory, it is necessary to quantitatively evaluate the effect of the droplets generated from the sea surface in order to grasp both accurately. In addition, it is necessary to consider the effects of rainfall in actual storms, which often involve rainfall.</p><p>In this study, to evaluate the flux exchange in the boundary layer quantitatively, we show the drag coefficient and the enthalpy exchange coefficient taking into account sea spray and rain. In addition, we show the results of observation of sea spray and rain using disdrometer and X-band radar.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


Sign in / Sign up

Export Citation Format

Share Document