PER Enhancement of Panda PM Fibers by Polarization Axis Alignment

Author(s):  
Yohan Kim ◽  
Byunghyuck Moon ◽  
Minkyu Park ◽  
Hwanseong Jeong ◽  
Seongmook Jeong ◽  
...  
Author(s):  
Z. L. Wang ◽  
C. L. Briant ◽  
J. DeLuca ◽  
A. Goyal ◽  
D. M. Kroeger ◽  
...  

Recent studies have shown that spray-pyrolyzed films of the Tl-1223 compound (TlxBa2Ca2Cu3Oy, with 0.7 < × < 0.95) on polycrystalline yttrium stabilized zirconia substrates can be prepared which have critical current density Jc near 105 A/cm2 at 77 K, in zero field. The films are polycrystalline, have excellent c-axis alignment, and show little evidence of weak-link behavior. Transmission electron microscopy (TEM) studies have shown that most grain boundaries have small misorientation angles. It has been found that the films have a nigh degree of local texture indicative of colonies of similarly oriented grains. It is believed that inter-colony conduction is enhanced by a percolative network of small angle boundaries at colony interfaces. It has also been found that Jc is increased by a factor of 4 - 5 after the films were annealed at 600 °C in oxygen. This study is thus carried out to determine the effect on grain boundary chemistry of the heat treatment.


2000 ◽  
Vol 26 (12) ◽  
pp. 1722-1728 ◽  
Author(s):  
Samir G. Farah ◽  
Eric Olafsson ◽  
David G. Gwynn ◽  
Dimitri T. Azar ◽  
Frederick S. Brightbill
Keyword(s):  

Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Zhou ◽  
Lu Deng ◽  
Long Cheng ◽  
Zhiqiang Cao ◽  
Shuo Wang ◽  
...  

In the motion of probing nanostructures, repeating position and movement is frequently happing and tolerance for position error is stringent. The consistency between the axis of manipulators and image is very significant since the visual servo is the most important tool in the automated manipulation. This paper proposed an automated axis alignment method for a nanomanipulator inside the SEM by recognizing the position of a closed-loop controlling the end-effector, which can characterize the relationship of these two axes, and then the rotation matrix can be calculated accordingly. The error of this method and its transfer function are also calculated to compare the iteration method and average method. The method in this paper can accelerate the process of axis alignment to avoid the electron beam induced deposition effect on the end tips. Experiment demonstration shows that it can achieve a 0.1-degree precision in 90 seconds.


JAMA ◽  
2020 ◽  
Vol 324 (11) ◽  
pp. 1111
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Masaki Hada ◽  
Daisuke Yamaguchi ◽  
Tadahiko Ishikawa ◽  
Takayoshi Sawa ◽  
Kenji Tsuruta ◽  
...  

Abstract The photoisomerization of molecules is widely used to control the structure of soft matter in both natural and synthetic systems. However, the structural dynamics of the molecules during isomerization and their subsequent response are difficult to elucidate due to their complex and ultrafast nature. Herein, we describe the ultrafast formation of higher-orientation of liquid-crystalline (LC) azobenzene molecules via linearly polarized ultraviolet light (UV) using ultrafast time-resolved electron diffraction. The ultrafast orientation is caused by the trans-to-cis isomerization of the azobenzene molecules. Our observations are consistent with simplified molecular dynamics calculations that revealed that the molecules are aligned with the laser polarization axis by their cooperative motion after photoisomerization. This insight advances the fundamental chemistry of photoresponsive molecules in soft matter as well as their ultrafast photomechanical applications.


Sign in / Sign up

Export Citation Format

Share Document