scholarly journals An Error Rate Comparison of Power Domain Non-orthogonal Multiple Access and Sparse Code Multiple Access

Author(s):  
Qu Luo ◽  
Pengyu Gao ◽  
Zilong Liu ◽  
Lixia Xiao ◽  
Zeina Mheich ◽  
...  
Author(s):  
Syed Aamer Hussain ◽  
Norulhusna Ahmad ◽  
Ibraheem Shayea ◽  
Hazilah Mad Kaidi ◽  
Liza Abdul Latiff ◽  
...  

<span lang="EN-GB">The progressions in telecommunication beyond the 5<sup>th</sup> generation have created a need to improve research drifts. The current 5G study has an important focus on non-orthogonal multiple access (NOMA) technology. sparse code multiple access (SCMA) is a promising technique within NOMA, enhancing the multi-user handling capability of next-generation communication. In the SCMA sphere, codebook designing and optimisation are essential research matters. This study conversed with different codebook design practises existing in the literature, analysing them for numerous parameters, including bit error rate (BER), an optimisation technique, and channel settings. From the analysis, the paper presents the efficiency of different approaches. The article also discusses the prospects and challenges of SCMA optimisation in practical implementation in various domains.</span>


2021 ◽  
Author(s):  
Madhura K ◽  
M.S.S. Rukmini ◽  
Rajeshree Raut

Abstract 5G in wireless communication aims at deploying massive connectivity. Sparse Code Multiple Access (SCMA), proves to be an emerging candidate with multidimensional codebooks proposing, high shaping gain and advanced multiuser detection. A framework for designing a codebook for 200 % overloaded SCMA system with system model is presented in this paper. This article aims at delineating a codebook by subdividing the Mother Constellation (MC) and rotating it to achieve a better Symbol Error Rate (SER) performance over higher values of SNR. Different Codebook designs are taken into consideration for comparing with the sub-constellation based 200% overloaded SCMA. Abstract — 5G in wireless communication aims at deploying massive connectivity. Sparse Code Multiple Access (SCMA), proves to be an emerging candidate with multidimensional codebooks proposing, high shaping gain and advanced multiuser detection. A framework for designing a codebook for 200 % overloaded SCMA system with system model is presented in this paper. This article aims at delineating a codebook by subdividing the Mother Constellation (MC) and rotating it to achieve a better Symbol Error Rate (SER) performance over higher values of SNR. Different Codebook designs are taken into consideration for comparing with the sub-constellation based 200% overloaded SCMA.


2021 ◽  
Author(s):  
Hemanth A V ◽  
Prajith Chandra K ◽  
Sai Bharadwaj K ◽  
Prasanthi V ◽  
Kirthiga S

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2153
Author(s):  
Yakov V. Kryukov ◽  
Dmitriy A. Pokamestov ◽  
Serafim A. Novichkov

Power domain non-orthogonal multiple access (PD-NOMA) is one of the most perspective multiplexing technologies that allows improving the capacity of actual networks. Unlike orthogonal multiple access (OMA), the PD-NOMA non-orthogonally schedules multiple users in the power domain in the same orthogonal time-spectrum resource segment. Thus, a non-orthogonal multiplexed signal is a combination of several user signals (usually, modulation and coding schemes (MCS) based on quadrature amplitude modulation) with different power weights. The symbol error rate (SER) and bit error rate (BER) performances are one of the main quality characteristics of any commutation channel. The issue is that a known analytical expression for BER and SER calculation for conventional OMA cannot be applied in terms of the PD-NOMA. In the following work, we have derived the SER and BER analytical expressions for gray-coded square quadrature amplitude modulation (QAM) user channels that are transmitted in two-user PD-NOMA channel under additive white Gaussian noise (AWGN). Through the simulation, the verification of the provided expressions is presented for four multiplexing configurations with various user power weights and QAM order combinations.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 747-759 ◽  
Author(s):  
Mohammad Moltafet ◽  
Nader Mokari ◽  
Mohammad Reza Javan ◽  
Hamid Saeedi ◽  
Hossein Pishro-Nik

Author(s):  
Aiman Kassir ◽  
◽  
Rudzidatul Akmam Dziyauddin ◽  
Hazilah Mad Kaidi ◽  
Mohd Azri Mohd Izhar ◽  
...  

2021 ◽  
Vol 46 ◽  
pp. 101295
Author(s):  
Ali Mohammed A. Alkhazzar ◽  
Hassan Aghaeinia

Sign in / Sign up

Export Citation Format

Share Document