Classification of voltage sags in distribution systems due to short circuit faults

Author(s):  
Suresh Kamble ◽  
Chandrashekhar Thorat
2014 ◽  
Vol 875-877 ◽  
pp. 1923-1928 ◽  
Author(s):  
Surya Hardi ◽  
Ismail Daut ◽  
Ismail Rohana ◽  
Muhd Hafizi

Voltage sags and interruption are one of most important of power quality problems. They can influence performance of equipment such as induction motors. They are generally caused by short circuit faults in transmission and distribution systems which propagate in entire of power systems. When their appear at a motor terminal, its effects are the speed and the torque will decrease to a level lower than values of the normal and even the motor become stall if magnitude of the voltage sags and duration exceed certain limit. The voltage can return to nominal voltage after end of the voltage sag and interruption. The motor will experience re-acceleration to normal condition is accompanied by large inrush current. A study on induction motors was carried out to confirm these effects. Single-phase and three-phase of small induction motors were used for investigating the effects caused by symmetrical voltage sags and interruption through experimental and simulation.


2015 ◽  
Vol 35 (2) ◽  
pp. 329-352 ◽  
Author(s):  
Anderson Roges Teixeira Góes ◽  
Maria Teresinha Arns Steiner ◽  
Rodrigo Antonio Peniche

2010 ◽  
Vol 130 (6) ◽  
pp. 551-558 ◽  
Author(s):  
Le Viet Tien ◽  
Thavatchai Tayjasanant ◽  
Akihiko Yokoyama ◽  
Bundhit Eua-Arporn

2012 ◽  
Vol 516-517 ◽  
pp. 1316-1321
Author(s):  
Ming Ta Yang ◽  
Jin Lung Guan ◽  
Jhy Cherng Gu

Wind generator and distribution systems after interconnection would change the short circuit fault characteristics of the original system and may lead to protection relay malfunctions, and review of the protection coordination. It is necessary to research the impact of existing protection strategies for distribution systems after wind generator interconnection. Linear programming methods were adopted for this study to review the coordination problems among feeder circuit breaker, lateral circuit breaker, and power fuse after radial distribution systems and wind generator interconnections.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 334
Author(s):  
Esteban Pulido ◽  
Luis Morán ◽  
Felipe Villarroel ◽  
José Silva

In this paper, a new concept of short-circuit current (SCC) reduction for power distribution systems is presented and analyzed. Conventional fault current limiters (FCLs) are connected in series with a circuit breaker (CB) that is required to limit the short-circuit current. Instead, the proposed scheme consisted of the parallel connection of a current-controlled power converter to the same bus intended to reduce the amplitude of the short-circuit current. This power converter was controlled to absorb a percentage of the short-circuit current from the bus to reduce the amplitude of the short-circuit current. The proposed active short-circuit current reduction scheme was implemented with a cascaded H-bridge power converter and tested by simulation in a 13.2 kV industrial power distribution system for three-phase faults, showing the effectiveness of the short-circuit current attenuation in reducing the maximum current requirement in all circuit breakers connected to the same bus. The paper also presents the design characteristics of the power converter and its associated control scheme.


Sign in / Sign up

Export Citation Format

Share Document