Diffusion phenomena in simple Hamiltonian systems: some analytical and numerical results

Author(s):  
A. Bazzani ◽  
M. Giovannozzi ◽  
S. Rambaldi ◽  
G. Turchetti
2002 ◽  
Vol 12 (02) ◽  
pp. 409-419 ◽  
Author(s):  
ALBERT C. J. LUO

The energy increment spectrum method is developed for the numerical prediction of a specific primary resonant layer, and the width of the resonant layer can be estimated through the energy increment spectrum. This numerical approach is applied to investigate the (2M:1)-librational and (M:1)-rotational, resonant layers in a parametrically excited pendulum, and the corresponding analytical conditions for such resonant layers are developed. The numerical approach predicts the appearance and disappearance of resonant layers in nonlinear Hamiltonian systems rather than the conventional Poincaré mapping method. Illustrations of the analytical and numerical results for the appearance and disappearance of the resonant layers are given. The width of the resonant layers in the paremetric pendulum is computed. The analytical method should be further improved through renormalization.


1986 ◽  
Vol 34 (2) ◽  
pp. 1550-1555 ◽  
Author(s):  
Andrea Malagoli ◽  
Giovanni Paladin ◽  
Angelo Vulpiani

2014 ◽  
Vol 07 (03) ◽  
pp. 1450031 ◽  
Author(s):  
Brajesh Kumar Jha ◽  
Neeru Adlakha ◽  
M. N. Mehta

In this paper a finite element model is developed to study cytosolic calcium concentration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model consists of reaction–diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numerical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of EGTA, BAPTA and σCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results.


2020 ◽  
Vol 92 (3) ◽  
pp. 31101
Author(s):  
Zahoor Iqbal ◽  
Masood Khan ◽  
Awais Ahmed

In this study, an effort is made to model the thermal conduction and mass diffusion phenomena in perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D flow of magnetized Burgers nanofluid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also included to investigate the heat flow mechanism. Additionally, mass diffusion process in flow of nanofluid is examined by employing the influence of chemical reaction. Mathematical modelling of momentum, heat and mass diffusion equations is carried out in mathematical formulation section of the manuscript. Homotopy analysis method (HAM) in Wolfram Mathematica is utilized to analyze the effects of physical dimensionless constants on flow, temperature and solutal distributions of Burgers nanofluid. Graphical results are depicted and physically justified in results and discussion section. At the end of the manuscript the section of closing remarks is also included to highlight the main findings of this study. It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature curves of nanofluid. Additionally, depreciation is assessed in mass diffusion process due to escalating amount of thermophoretic force constant.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


1999 ◽  
Vol 4 ◽  
pp. 31-86 ◽  
Author(s):  
R. Katilius ◽  
A. Matulionis ◽  
R. Raguotis ◽  
I. Matulionienė

The goal of the paper is to overview contemporary theoretical and experimental research of the microwave electric noise and fluctuations of hot carriers in semiconductors, revealing sensitivity of the noise spectra to non-linearity in the applied electric field strength and, especially, in the carrier density. During the last years, investigation of electronic noise and electron diffusion phenomena in doped semiconductors was in a rapid progress. By combining analytic and Monte Carlo methods as well as the available experimental results on noise, it became possible to obtain the electron diffusion coefficients in the range of electric fields where inter-electron collisions are important and Price’s relation is not necessarily valid. Correspondingly, a special attention to the role of inter-electron collisions and of the non-linearity in the carrier density while shaping electric noise and diffusion phenomena in the non-equilibrium states will be paid. The basic and up-to-date information will be presented on methods and advances in this contemporary field - the field in which methods of non-linear analytic and computational analysis are indispensable while seeking coherent understanding and interpretation of experimental results.


1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


Sign in / Sign up

Export Citation Format

Share Document