scholarly journals Scaling of third-order quadrupole aberrations with fringe field extension

Author(s):  
M. Venturini
Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
John W. Andrew ◽  
F.P. Ottensmeyer ◽  
E. Martell

Energy selecting electron microscopes of the Castaing-Henry prism-mirror-prism design suffer from a loss of image and energy resolution with increasing field of view. These effects can be qualitatively understood by examining the focusing properties of the prism shown in Fig. 1. A cone of electrons emerges from the entrance lens crossover A and impinges on the planar face of the prism. The task of the prism is to focus these electrons to a point B at a focal distance f2 from the side of the prism. Electrons traveling in the plane of the diagram (i.e., the symmetry plane of the prism) are focused toward point B due to the different path lengths of different electron trajectories in the triangularly shaped magnetic field. This is referred to as horizontal focusing; the better this focusing effect the better the energy resolution of the spectrometer. Electrons in a plane perpendicular to the diagram and containing the central ray of the incident cone are focused toward B by the curved fringe field of the prism.


Author(s):  
Zhifeng Shao

A small electron probe has many applications in many fields and in the case of the STEM, the probe size essentially determines the ultimate resolution. However, there are many difficulties in obtaining a very small probe.Spherical aberration is one of them and all existing probe forming systems have non-zero spherical aberration. The ultimate probe radius is given byδ = 0.43Csl/4ƛ3/4where ƛ is the electron wave length and it is apparent that δ decreases only slowly with decreasing Cs. Scherzer pointed out that the third order aberration coefficient always has the same sign regardless of the field distribution, provided only that the fields have cylindrical symmetry, are independent of time and no space charge is present. To overcome this problem, he proposed a corrector consisting of octupoles and quadrupoles.


1973 ◽  
Vol 16 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Elizabeth Carrow ◽  
Michael Mauldin

As a general index of language development, the recall of first through fourth order approximations to English was examined in four, five, six, and seven year olds and adults. Data suggested that recall improved with age, and increases in approximation to English were accompanied by increases in recall for six and seven year olds and adults. Recall improved for four and five year olds through the third order but declined at the fourth. The latter finding was attributed to deficits in semantic structures and memory processes in four and five year olds. The former finding was interpreted as an index of the development of general linguistic processes.


1997 ◽  
Vol 91 (4) ◽  
pp. 761-767 ◽  
Author(s):  
D. HENDERSON ◽  
S. SOKOŁOWSKI ◽  
R. ZAGORSKI ◽  
A. TROKHYMCHUK

2020 ◽  
Vol E103.C (11) ◽  
pp. 653-660
Author(s):  
Daichi FURUBAYASHI ◽  
Yuta KASHIWAGI ◽  
Takanori SATO ◽  
Tadashi KAWAI ◽  
Akira ENOKIHARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document